File size: 4,022 Bytes
6bc94ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import time
import numpy as np
import sys


def progbar(i, n, size=16):
    done = (i * size) // n
    bar = ''
    for i in range(size):
        bar += 'β–ˆ' if i <= done else 'β–‘'
    return bar


def stream(message) :
    try:
        sys.stdout.write("\r{%s}" % message)
    except:
        #Remove non-ASCII characters from message
        message = ''.join(i for i in message if ord(i)<128)
        sys.stdout.write("\r{%s}" % message)


def simple_table(item_tuples) :

    border_pattern = '+---------------------------------------'
    whitespace = '                                            '

    headings, cells, = [], []

    for item in item_tuples :

        heading, cell = str(item[0]), str(item[1])

        pad_head = True if len(heading) < len(cell) else False

        pad = abs(len(heading) - len(cell))
        pad = whitespace[:pad]

        pad_left = pad[:len(pad)//2]
        pad_right = pad[len(pad)//2:]

        if pad_head :
            heading = pad_left + heading + pad_right
        else :
            cell = pad_left + cell + pad_right

        headings += [heading]
        cells += [cell]

    border, head, body = '', '', ''

    for i in range(len(item_tuples)) :

        temp_head = f'| {headings[i]} '
        temp_body = f'| {cells[i]} '

        border += border_pattern[:len(temp_head)]
        head += temp_head
        body += temp_body

        if i == len(item_tuples) - 1 :
            head += '|'
            body += '|'
            border += '+'

    print(border)
    print(head)
    print(border)
    print(body)
    print(border)
    print(' ')


def time_since(started) :
    elapsed = time.time() - started
    m = int(elapsed // 60)
    s = int(elapsed % 60)
    if m >= 60 :
        h = int(m // 60)
        m = m % 60
        return f'{h}h {m}m {s}s'
    else :
        return f'{m}m {s}s'

def save_attention(attn, path):
    import matplotlib.pyplot as plt

    fig = plt.figure(figsize=(12, 6))
    plt.imshow(attn.T, interpolation='nearest', aspect='auto')
    fig.savefig(f'{path}.png', bbox_inches='tight')
    plt.close(fig)

def save_attention_multiple(attn, path):
    import matplotlib.pyplot as plt

    num_plots = len(attn)
    fig = plt.figure(figsize=(12, 6 * num_plots))
    for i, a in enumerate(attn):
        plt.subplot(num_plots, 1, i+1)
        plt.imshow(a.T, interpolation='nearest', aspect='auto')
        plt.xlabel("Decoder Step")
        plt.ylabel("Encoder Step")
        plt.title(f"Encoder-Decoder Alignment of No.{i} Sequence")
    fig.savefig(f'{path}.png', bbox_inches='tight')
    plt.close(fig)

def save_stop_tokens(stop, path):
    import matplotlib.pyplot as plt

    num_plots = len(stop)
    fig = plt.figure(figsize=(12, 6 * num_plots))
    for i, s in enumerate(stop):
        plt.subplot(num_plots, 1, i+1)
        plt.plot(s)
        plt.xlabel("Timestep")
        plt.ylabel("Stop Value")
        plt.title(f"Stop Tokens of No.{i} Sequence")
    fig.savefig(f'{path}.png', bbox_inches='tight')
    plt.close(fig)


def save_spectrogram(M, path, length=None):
    import matplotlib.pyplot as plt

    M = np.flip(M, axis=0)
    if length : M = M[:, :length]
    fig = plt.figure(figsize=(12, 6))
    plt.imshow(M, interpolation='nearest', aspect='auto')
    plt.xlabel("Time")
    plt.ylabel("Frequency")
    plt.title("Generated Mel Spectrogram")
    fig.savefig(f'{path}.png', bbox_inches='tight')
    plt.close(fig)


def plot(array):
    import matplotlib.pyplot as plt

    fig = plt.figure(figsize=(30, 5))
    ax = fig.add_subplot(111)
    ax.xaxis.label.set_color('grey')
    ax.yaxis.label.set_color('grey')
    ax.xaxis.label.set_fontsize(23)
    ax.yaxis.label.set_fontsize(23)
    ax.tick_params(axis='x', colors='grey', labelsize=23)
    ax.tick_params(axis='y', colors='grey', labelsize=23)
    plt.plot(array)


def plot_spec(M):
    import matplotlib.pyplot as plt

    M = np.flip(M, axis=0)
    plt.figure(figsize=(18,4))
    plt.imshow(M, interpolation='nearest', aspect='auto')
    plt.show()