Spaces:
Runtime error
Runtime error
File size: 5,697 Bytes
6bc94ac 436ce71 15303cb 6bc94ac 436ce71 15303cb a0194f4 6bc94ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import datetime
import numpy as np
import torch
import torch.nn.functional as F
import os
import json
import speech_recognition as sr
import re
import time
import spacy
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModel
import pickle
import streamlit as st
from sklearn.metrics.pairwise import cosine_similarity
import run_tts
# Build the AI
class CelebBot():
def __init__(self, name, QA_tokenizer, QA_model, sentTr_tokenizer, sentTr_model, spacy_model, knowledge_sents):
self.name = name
print("--- starting up", self.name, "---")
self.text = ""
self.QA_tokenizer = QA_tokenizer
self.QA_model = QA_model
self.sentTr_tokenizer = sentTr_tokenizer
self.sentTr_model = sentTr_model
self.spacy_model = spacy_model
self.all_knowledge = knowledge_sents
def speech_to_text(self):
recognizer = sr.Recognizer()
with sr.Microphone() as mic:
recognizer.adjust_for_ambient_noise(mic, duration=1)
# flag = input("Are you ready to record?\nProceed (Y/n)")
# try:
# assert flag=='Y'
# except:
# self.text = ""
# print(f"me --> Permission denied")
time.sleep(1)
print("listening")
audio = recognizer.listen(mic)
try:
self.text = recognizer.recognize_google(audio)
except:
self.text = ""
print(f"me --> No audio recognized")
def wake_up(self, text):
return True if "hey " + self.name in text.lower() else False
def text_to_speech(self, autoplay=True):
return run_tts.tts(self.text, "_".join(self.name.split(" ")), self.spacy_model, autoplay)
def sentence_embeds_inference(self, texts: list):
def _mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Tokenize sentences
encoded_input = self.sentTr_tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
encoded_input["input_ids"] = encoded_input["input_ids"]
encoded_input["attention_mask"] = encoded_input["attention_mask"]
# Compute token embeddings
with torch.no_grad():
model_output = self.sentTr_model(**encoded_input)
# Perform pooling
sentence_embeddings = _mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
return sentence_embeddings
def retrieve_knowledge_assertions(self):
question_embeddings = self.sentence_embeds_inference([self.name + ', ' + self.text])
all_knowledge_embeddings = self.sentence_embeds_inference(self.all_knowledge)
similarity = cosine_similarity(all_knowledge_embeddings.cpu(), question_embeddings.cpu())
similarity = np.reshape(similarity, (1, -1))[0]
K = min(8, len(self.all_knowledge))
top_K = np.sort(np.argpartition(similarity, -K)[-K: ])
all_knowledge_assertions = np.array(self.all_knowledge)[top_K]
# similarities = np.array(similarity)[top_K]
# print(*list(zip(all_knowledge_assertions, similarities)), sep='\n')
return ' '.join(all_knowledge_assertions)
def question_answer(self, instruction1='', knowledge=''):
if self.text != "":
## wake up
if self.wake_up(self.text) is True:
self.text = f"Hello I am {self.name} the AI, what can I do for you?"
## have a conversation
else:
if re.search(re.compile(rf'\b(you|your|{self.name})\b', flags=re.IGNORECASE), self.text) != None:
instruction1 = f'You are a celebrity named {self.name}. You need to answer the question based on knowledge and commonsense.'
knowledge = self.retrieve_knowledge_assertions()
else:
instruction1 = f'You need to answer the question based on commonsense.'
query = f"Context: {instruction1} {knowledge} Question: {self.text} Answer:"
input_ids = self.QA_tokenizer(f"{query}", return_tensors="pt").input_ids
outputs = self.QA_model.generate(input_ids, max_length=1024)
self.text = self.QA_tokenizer.decode(outputs[0], skip_special_tokens=True)
# instruction2 = f'[Instruction] You are a celebrity named {self.name}. You need to answer the question based on knowledge'
# query = f"{instruction2} [knowledge] {self.text} {answer} [question] {self.name}, {self.text}"
# input_ids = self.QA_tokenizer(f"{query}", return_tensors="pt").input_ids
# outputs = self.QA_model.generate(input_ids, max_length=1024)
# self.text = self.QA_tokenizer.decode(outputs[0], skip_special_tokens=True)
return self.text
@staticmethod
def action_time():
return f"it's {datetime.datetime.now().time().strftime('%H:%M')}"
@staticmethod
def save_kb(kb, filename):
with open(filename, "wb") as f:
pickle.dump(kb, f)
@staticmethod
def load_kb(filename):
res = None
with open(filename, "rb") as f:
res = pickle.load(f)
return res |