File size: 7,018 Bytes
6bc94ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils.display import *
from utils.dsp import *


class WaveRNN(nn.Module) :
    def __init__(self, hidden_size=896, quantisation=256) :
        super(WaveRNN, self).__init__()
        
        self.hidden_size = hidden_size
        self.split_size = hidden_size // 2
        
        # The main matmul
        self.R = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
        
        # Output fc layers
        self.O1 = nn.Linear(self.split_size, self.split_size)
        self.O2 = nn.Linear(self.split_size, quantisation)
        self.O3 = nn.Linear(self.split_size, self.split_size)
        self.O4 = nn.Linear(self.split_size, quantisation)
        
        # Input fc layers
        self.I_coarse = nn.Linear(2, 3 * self.split_size, bias=False)
        self.I_fine = nn.Linear(3, 3 * self.split_size, bias=False)

        # biases for the gates
        self.bias_u = nn.Parameter(torch.zeros(self.hidden_size))
        self.bias_r = nn.Parameter(torch.zeros(self.hidden_size))
        self.bias_e = nn.Parameter(torch.zeros(self.hidden_size))
        
        # display num params
        self.num_params()

        
    def forward(self, prev_y, prev_hidden, current_coarse) :
        
        # Main matmul - the projection is split 3 ways
        R_hidden = self.R(prev_hidden)
        R_u, R_r, R_e, = torch.split(R_hidden, self.hidden_size, dim=1)
        
        # Project the prev input 
        coarse_input_proj = self.I_coarse(prev_y)
        I_coarse_u, I_coarse_r, I_coarse_e = \
            torch.split(coarse_input_proj, self.split_size, dim=1)
        
        # Project the prev input and current coarse sample
        fine_input = torch.cat([prev_y, current_coarse], dim=1)
        fine_input_proj = self.I_fine(fine_input)
        I_fine_u, I_fine_r, I_fine_e = \
            torch.split(fine_input_proj, self.split_size, dim=1)
        
        # concatenate for the gates
        I_u = torch.cat([I_coarse_u, I_fine_u], dim=1)
        I_r = torch.cat([I_coarse_r, I_fine_r], dim=1)
        I_e = torch.cat([I_coarse_e, I_fine_e], dim=1)
        
        # Compute all gates for coarse and fine 
        u = F.sigmoid(R_u + I_u + self.bias_u)
        r = F.sigmoid(R_r + I_r + self.bias_r)
        e = F.tanh(r * R_e + I_e + self.bias_e)
        hidden = u * prev_hidden + (1. - u) * e
        
        # Split the hidden state
        hidden_coarse, hidden_fine = torch.split(hidden, self.split_size, dim=1)
        
        # Compute outputs 
        out_coarse = self.O2(F.relu(self.O1(hidden_coarse)))
        out_fine = self.O4(F.relu(self.O3(hidden_fine)))

        return out_coarse, out_fine, hidden
    
        
    def generate(self, seq_len):
        with torch.no_grad():
            # First split up the biases for the gates 
            b_coarse_u, b_fine_u = torch.split(self.bias_u, self.split_size)
            b_coarse_r, b_fine_r = torch.split(self.bias_r, self.split_size)
            b_coarse_e, b_fine_e = torch.split(self.bias_e, self.split_size)

            # Lists for the two output seqs
            c_outputs, f_outputs = [], []

            # Some initial inputs
            out_coarse = torch.LongTensor([0]).cuda()
            out_fine = torch.LongTensor([0]).cuda()

            # We'll meed a hidden state
            hidden = self.init_hidden()

            # Need a clock for display
            start = time.time()

            # Loop for generation
            for i in range(seq_len) :

                # Split into two hidden states
                hidden_coarse, hidden_fine = \
                    torch.split(hidden, self.split_size, dim=1)

                # Scale and concat previous predictions
                out_coarse = out_coarse.unsqueeze(0).float() / 127.5 - 1.
                out_fine = out_fine.unsqueeze(0).float() / 127.5 - 1.
                prev_outputs = torch.cat([out_coarse, out_fine], dim=1)

                # Project input 
                coarse_input_proj = self.I_coarse(prev_outputs)
                I_coarse_u, I_coarse_r, I_coarse_e = \
                    torch.split(coarse_input_proj, self.split_size, dim=1)

                # Project hidden state and split 6 ways
                R_hidden = self.R(hidden)
                R_coarse_u , R_fine_u, \
                R_coarse_r, R_fine_r, \
                R_coarse_e, R_fine_e = torch.split(R_hidden, self.split_size, dim=1)

                # Compute the coarse gates
                u = F.sigmoid(R_coarse_u + I_coarse_u + b_coarse_u)
                r = F.sigmoid(R_coarse_r + I_coarse_r + b_coarse_r)
                e = F.tanh(r * R_coarse_e + I_coarse_e + b_coarse_e)
                hidden_coarse = u * hidden_coarse + (1. - u) * e

                # Compute the coarse output
                out_coarse = self.O2(F.relu(self.O1(hidden_coarse)))
                posterior = F.softmax(out_coarse, dim=1)
                distrib = torch.distributions.Categorical(posterior)
                out_coarse = distrib.sample()
                c_outputs.append(out_coarse)

                # Project the [prev outputs and predicted coarse sample]
                coarse_pred = out_coarse.float() / 127.5 - 1.
                fine_input = torch.cat([prev_outputs, coarse_pred.unsqueeze(0)], dim=1)
                fine_input_proj = self.I_fine(fine_input)
                I_fine_u, I_fine_r, I_fine_e = \
                    torch.split(fine_input_proj, self.split_size, dim=1)

                # Compute the fine gates
                u = F.sigmoid(R_fine_u + I_fine_u + b_fine_u)
                r = F.sigmoid(R_fine_r + I_fine_r + b_fine_r)
                e = F.tanh(r * R_fine_e + I_fine_e + b_fine_e)
                hidden_fine = u * hidden_fine + (1. - u) * e

                # Compute the fine output
                out_fine = self.O4(F.relu(self.O3(hidden_fine)))
                posterior = F.softmax(out_fine, dim=1)
                distrib = torch.distributions.Categorical(posterior)
                out_fine = distrib.sample()
                f_outputs.append(out_fine)

                # Put the hidden state back together
                hidden = torch.cat([hidden_coarse, hidden_fine], dim=1)

                # Display progress
                speed = (i + 1) / (time.time() - start)
                stream('Gen: %i/%i -- Speed: %i',  (i + 1, seq_len, speed))

            coarse = torch.stack(c_outputs).squeeze(1).cpu().data.numpy()
            fine = torch.stack(f_outputs).squeeze(1).cpu().data.numpy()        
            output = combine_signal(coarse, fine)
        
        return output, coarse, fine

    def init_hidden(self, batch_size=1) :
        return torch.zeros(batch_size, self.hidden_size).cuda()
    
    def num_params(self) :
        parameters = filter(lambda p: p.requires_grad, self.parameters())
        parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
        print('Trainable Parameters: %.3f million' % parameters)