File size: 4,826 Bytes
6bc94ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import ast
import pprint

class HParams(object):
    def __init__(self, **kwargs): self.__dict__.update(kwargs)
    def __setitem__(self, key, value): setattr(self, key, value)
    def __getitem__(self, key): return getattr(self, key)
    def __repr__(self): return pprint.pformat(self.__dict__)

    def parse(self, string):
        # Overrides hparams from a comma-separated string of name=value pairs
        if len(string) > 0:
            overrides = [s.split("=") for s in string.split(",")]
            keys, values = zip(*overrides)
            keys = list(map(str.strip, keys))
            values = list(map(str.strip, values))
            for k in keys:
                self.__dict__[k] = ast.literal_eval(values[keys.index(k)])
        return self

syn_hparams = HParams(
        ### Signal Processing (used in both synthesizer and vocoder)
        sample_rate = 16000,
        n_fft = 800,
        num_mels = 80,
        hop_size = 200,                             # Tacotron uses 12.5 ms frame shift (set to sample_rate * 0.0125)
        win_size = 800,                             # Tacotron uses 50 ms frame length (set to sample_rate * 0.050)
        fmin = 55,
        min_level_db = -100,
        ref_level_db = 20,
        max_abs_value = 4.,                         # Gradient explodes if too big, premature convergence if too small.
        preemphasis = 0.97,                         # Filter coefficient to use if preemphasize is True
        preemphasize = True,

        ### Tacotron Text-to-Speech (TTS)
        tts_embed_dims = 512,                       # Embedding dimension for the graphemes/phoneme inputs
        tts_encoder_dims = 256,
        tts_decoder_dims = 128,
        tts_postnet_dims = 512,
        tts_encoder_K = 5,
        tts_lstm_dims = 1024,
        tts_postnet_K = 5,
        tts_num_highways = 4,
        tts_dropout = 0.5,
        tts_cleaner_names = ["english_cleaners"],
        tts_start_threshold = -1.2, 
        tts_stop_threshold = -1.2,                     # Value below which audio generation ends.
                                                    # For example, for a range of [-4, 4], this
                                                    # will terminate the sequence at the first
                                                    # frame that has all values < -3.4

        ### Tacotron Training
        tts_schedule = [(2,  1e-3,  40_000,  12),   # Progressive training schedule
                        (2,  5e-4,  80_000,  12),   # (r, lr, step, batch_size)
                        (2,  2e-4,  160_000,  12),   #
                        (2,  1e-4, 320_000,  64),   # r = reduction factor (# of mel frames
                        (2,  3e-5, 640_000,  64),   #     synthesized for each decoder iteration)
                        (2,  1e-5, 1280_000,  64), 
                        (2,  5e-6, 2560_000,  64),
                        (2,  1e-6, 5120_000,  64)],  
                        # lr = learning rate

        tts_clip_grad_norm = 1.0,                   # clips the gradient norm to prevent explosion - set to None if not needed
        tts_eval_interval = 100,                    # Number of steps between model evaluation (sample generation)
                                                    # Set to -1 to generate after completing epoch, or 0 to disable

        tts_eval_num_samples = 1,                   # Makes this number of samples

        ### Data Preprocessing
        max_mel_frames = 900,
        rescale = True,
        rescaling_max = 0.9,
        synthesis_batch_size = 16,                  # For vocoder preprocessing and inference.

        ### Mel Visualization and Griffin-Lim
        signal_normalization = True,
        power = 1.5,
        griffin_lim_iters = 60,

        ### Audio processing options
        fmax = 7600,                                # Should not exceed (sample_rate // 2)
        allow_clipping_in_normalization = True,     # Used when signal_normalization = True
        clip_mels_length = True,                    # If true, discards samples exceeding max_mel_frames
        use_lws = False,                            # "Fast spectrogram phase recovery using local weighted sums"
        symmetric_mels = True,                      # Sets mel range to [-max_abs_value, max_abs_value] if True,
                                                    #               and [0, max_abs_value] if False

        ### SV2TTS
        speaker_embedding_size = 256,               # Dimension for the speaker embedding
        silence_min_duration_split = 0.4,           # Duration in seconds of a silence for an utterance to be split
        utterance_min_duration = 1,                 # Duration in seconds below which utterances are discarded
        )

def hparams_debug_string():
    return str(syn_hparams)