CelebChat / rtvc /synthesizer /inference.py
lhzstar
initial commits
6bc94ac
import torch
from synthesizer import audio
from synthesizer.hparams import syn_hparams
from synthesizer.models.tacotron import Tacotron
from synthesizer.utils.symbols import symbols
from synthesizer.utils.text import text_to_sequence
from vocoder.display import simple_table
from pathlib import Path
from typing import Union, List
import numpy as np
import librosa
class Synthesizer_infer:
sample_rate = syn_hparams.sample_rate
hparams = syn_hparams
def __init__(self, model_fpath: Path, verbose=True):
"""
The model isn't instantiated and loaded in memory until needed or until load() is called.
:param model_fpath: path to the trained model file
:param verbose: if False, prints less information when using the model
"""
self.model_fpath = model_fpath
self.verbose = verbose
# Check for GPU
if torch.cuda.is_available():
self.device = torch.device("cuda")
else:
self.device = torch.device("cpu")
if self.verbose:
print("Synthesizer using device:", self.device)
# Tacotron model will be instantiated later on first use.
self._model = None
def is_loaded(self):
"""
Whether the model is loaded in memory.
"""
return self._model is not None
def load(self):
"""
Instantiates and loads the model given the weights file that was passed in the constructor.
"""
self._model = Tacotron(embed_dims=syn_hparams.tts_embed_dims,
num_chars=len(symbols),
encoder_dims=syn_hparams.tts_encoder_dims,
decoder_dims=syn_hparams.tts_decoder_dims,
n_mels=syn_hparams.num_mels,
fft_bins=syn_hparams.num_mels,
postnet_dims=syn_hparams.tts_postnet_dims,
encoder_K=syn_hparams.tts_encoder_K,
lstm_dims=syn_hparams.tts_lstm_dims,
postnet_K=syn_hparams.tts_postnet_K,
num_highways=syn_hparams.tts_num_highways,
dropout=syn_hparams.tts_dropout,
stop_threshold=syn_hparams.tts_stop_threshold,
speaker_embedding_size=syn_hparams.speaker_embedding_size).to(self.device)
self._model.load(self.model_fpath)
self._model.eval()
if self.verbose:
print("Loaded synthesizer \"%s\" trained to step %d" % (self.model_fpath.name, self._model.state_dict()["step"]))
def synthesize_spectrograms(self, texts: List[str],
embeddings: Union[np.ndarray, List[np.ndarray]],
require_visualization=False):
"""
Synthesizes mel spectrograms from texts and speaker embeddings.
:param texts: a list of N text prompts to be synthesized
:param embeddings: a numpy array or list of speaker embeddings of shape (N, 256)
:param require_visualization: if True, a matrix representing the alignments between the
characters
and each decoder output step will be returned for each spectrogram
:return: a list of N melspectrograms as numpy arrays of shape (80, Mi), where Mi is the
sequence length of spectrogram i, and possibly the alignments.
"""
# Load the model on the first request.
if not self.is_loaded():
self.load()
# Preprocess text inputs
inputs = [text_to_sequence(text.strip()) for text in texts]
if not isinstance(embeddings, list):
embeddings = [embeddings]
# Batch inputs
batched_inputs = [inputs[i:i+syn_hparams.synthesis_batch_size]
for i in range(0, len(inputs), syn_hparams.synthesis_batch_size)]
batched_embeds = [embeddings[i:i+syn_hparams.synthesis_batch_size]
for i in range(0, len(embeddings), syn_hparams.synthesis_batch_size)]
specs = []
for i, batch in enumerate(batched_inputs, 1):
if self.verbose:
print(f"\n| Generating {i}/{len(batched_inputs)}")
# Pad texts so they are all the same length
text_lens = [len(text) for text in batch]
max_text_len = max(text_lens)
chars = [pad1d(text, max_text_len) for text in batch]
chars = np.stack(chars)
# Stack speaker embeddings into 2D array for batch processing
speaker_embeds = np.stack(batched_embeds[i-1])
# Convert to tensor
chars = torch.tensor(chars).long().to(self.device)
speaker_embeddings = torch.tensor(speaker_embeds).float().to(self.device)
# Inference
_, mels, alignments, stop_tokens = self._model.generate(chars, speaker_embeddings)
mels = mels.detach().cpu().numpy()
alignments = alignments.detach().cpu().numpy()
stop_tokens = stop_tokens.detach().cpu().numpy()
for m in mels:
# Trim silence from end of each spectrogram
while np.max(m[:, -1]) < syn_hparams.tts_stop_threshold:
if m.shape[-1] == 1:
break
m = m[:, :-1]
# Trim silence from start of each spectrogram
while np.max(m[:, 0]) < syn_hparams.tts_start_threshold:
if m.shape[-1] == 1:
break
m = m[:, 1:]
specs.append(m)
if self.verbose:
print("\n\nDone.\n")
return (specs, alignments, stop_tokens) if require_visualization else specs
@staticmethod
def load_preprocess_wav(fpath):
"""
Loads and preprocesses an audio file under the same conditions the audio files were used to
train the synthesizer.
"""
wav = librosa.load(str(fpath), syn_hparams.sample_rate)[0]
if syn_hparams.rescale:
wav = wav / np.abs(wav).max() * syn_hparams.rescaling_max
return wav
@staticmethod
def make_spectrogram(fpath_or_wav: Union[str, Path, np.ndarray]):
"""
Creates a mel spectrogram from an audio file in the same manner as the mel spectrograms that
were fed to the synthesizer when training.
"""
if isinstance(fpath_or_wav, str) or isinstance(fpath_or_wav, Path):
wav = Synthesizer_infer.load_preprocess_wav(fpath_or_wav)
else:
wav = fpath_or_wav
mel_spectrogram = audio.melspectrogram(wav, syn_hparams).astype(np.float32)
return mel_spectrogram
@staticmethod
def griffin_lim(mel):
"""
Inverts a mel spectrogram using Griffin-Lim. The mel spectrogram is expected to have been built
with the same parameters present in hparams.py.
"""
return audio.inv_mel_spectrogram(mel, syn_hparams)
def pad1d(x, max_len, pad_value=0):
return np.pad(x, (0, max_len - len(x)), mode="constant", constant_values=pad_value)