CelebChat / rtvc /synthesizer /preprocess.py
lhzstar
initial commits
6bc94ac
from multiprocessing.pool import Pool
from synthesizer import audio
from functools import partial
from itertools import chain, groupby
from encoder import inference as encoder_infer
from pathlib import Path
from utils import logmmse
from tqdm import tqdm
import numpy as np
import librosa
import random
def preprocess_librispeech(datasets_root: Path, out_dir: Path, n_processes: int, skip_existing: bool, hparams,
datasets_name: str, subfolders: str, no_alignments=False):
# Gather the input directories of LibriSpeeech
dataset_root = datasets_root.joinpath(datasets_name)
input_dirs = [dataset_root.joinpath(subfolder.strip()) for subfolder in subfolders.split(",")]
print("\n ".join(map(str, ["Using data from:"] + input_dirs)))
assert all(input_dir.exists() for input_dir in input_dirs)
train_input_dirs = input_dirs[: -1]
dev_input_dirs = input_dirs[-1: ]
# Create the output directories for each output file type
train_out_dir = out_dir.joinpath("train")
train_out_dir.mkdir(exist_ok=True)
train_out_dir.joinpath("mels").mkdir(exist_ok=True)
train_out_dir.joinpath("audio").mkdir(exist_ok=True)
# Create a metadata file
train_metadata_fpath = train_out_dir.joinpath("train.txt")
train_metadata_file = train_metadata_fpath.open("a" if skip_existing else "w", encoding="utf-8")
dev_out_dir = out_dir.joinpath("dev")
dev_out_dir.mkdir(exist_ok=True)
dev_out_dir.joinpath("mels").mkdir(exist_ok=True)
dev_out_dir.joinpath("audio").mkdir(exist_ok=True)
# Create a metadata file
dev_metadata_fpath = dev_out_dir.joinpath("dev.txt")
dev_metadata_file = dev_metadata_fpath.open("a" if skip_existing else "w", encoding="utf-8")
# Preprocess the train dataset
train_speaker_dirs = list(chain.from_iterable(train_input_dir.glob("*") for train_input_dir in train_input_dirs))
func = partial(preprocess_speaker, out_dir=train_out_dir, skip_existing=skip_existing,
hparams=hparams, no_alignments=no_alignments)
job = Pool(n_processes).imap(func, train_speaker_dirs)
for speaker_metadata in tqdm(job, datasets_name, len(train_speaker_dirs), unit="speakers"):
for metadatum in speaker_metadata:
train_metadata_file.write("|".join(str(x) for x in metadatum) + "\n")
train_metadata_file.close()
# Verify the contents of the metadata file
with train_metadata_fpath.open("r", encoding="utf-8") as train_metadata_file:
metadata = [line.split("|") for line in train_metadata_file]
mel_frames = sum([int(m[4]) for m in metadata])
timesteps = sum([int(m[3]) for m in metadata])
sample_rate = hparams.sample_rate
hours = (timesteps / sample_rate) / 3600
print("The train dataset consists of %d utterances, %d mel frames, %d audio timesteps (%.2f hours)." %
(len(metadata), mel_frames, timesteps, hours))
print("Max input length (text chars): %d" % max(len(m[5]) for m in metadata))
print("Max mel frames length: %d" % max(int(m[4]) for m in metadata))
print("Max audio timesteps length: %d" % max(int(m[3]) for m in metadata))
# Preprocess the dev dataset
dev_speaker_dirs = list(chain.from_iterable(dev_input_dir.glob("*") for dev_input_dir in dev_input_dirs))
func = partial(preprocess_speaker, out_dir=dev_out_dir, skip_existing=skip_existing,
hparams=hparams, no_alignments=no_alignments)
job = Pool(n_processes).imap(func, dev_speaker_dirs)
for speaker_metadata in tqdm(job, datasets_name, len(dev_speaker_dirs), unit="speakers"):
for metadatum in speaker_metadata:
dev_metadata_file.write("|".join(str(x) for x in metadatum) + "\n")
dev_metadata_file.close()
# Verify the contents of the metadata file
with dev_metadata_fpath.open("r", encoding="utf-8") as dev_metadata_file:
metadata = [line.split("|") for line in dev_metadata_file]
mel_frames = sum([int(m[4]) for m in metadata])
timesteps = sum([int(m[3]) for m in metadata])
sample_rate = hparams.sample_rate
hours = (timesteps / sample_rate) / 3600
print("The dev dataset consists of %d utterances, %d mel frames, %d audio timesteps (%.2f hours)." %
(len(metadata), mel_frames, timesteps, hours))
print("Max input length (text chars): %d" % max(len(m[5]) for m in metadata))
print("Max mel frames length: %d" % max(int(m[4]) for m in metadata))
print("Max audio timesteps length: %d" % max(int(m[3]) for m in metadata))
def preprocess_vctk(datasets_root: Path, out_dir: Path, n_processes: int, skip_existing: bool, hparams,
datasets_name: str, subfolders: str, no_alignments=True):
# TODO:Gather the input directories of VCTK
dataset_root = datasets_root.joinpath(datasets_name)
input_dir = dataset_root.joinpath(subfolders)
print("Using data from:" + str(input_dir))
assert input_dir.exists()
paths = [*input_dir.rglob("*.flac")]
# train dev audio data split
train_input_fpaths = []
dev_input_fpaths = []
pairs = sorted([(p.parts[-2].split('_')[0], p) for p in paths])
del paths
for _, group in groupby(pairs, lambda pair: pair[0]):
paths = sorted([p for _, p in group if "mic1.flac" in str(p)]) # only get mic1 flac file
random.seed(0)
random.shuffle(paths)
n = round(len(paths) * 0.9)
train_input_fpaths.extend(paths[:n])
# dev dataset has the same speakers as train dataset
dev_input_fpaths.extend(paths[n:])
# Create the output directories for each output file type
train_out_dir = out_dir.joinpath("train")
train_out_dir.mkdir(exist_ok=True)
train_out_dir.joinpath("mels").mkdir(exist_ok=True)
train_out_dir.joinpath("audio").mkdir(exist_ok=True)
dev_out_dir = out_dir.joinpath("dev")
dev_out_dir.mkdir(exist_ok=True)
dev_out_dir.joinpath("mels").mkdir(exist_ok=True)
dev_out_dir.joinpath("audio").mkdir(exist_ok=True)
# Preprocess the train dataset
preprocess_data(train_input_fpaths, mode="train", out_dir=train_out_dir, skip_existing=skip_existing, hparams=hparams, no_alignments=no_alignments)
# Preprocess the dev dataset
preprocess_data(dev_input_fpaths, mode="dev", out_dir=dev_out_dir, skip_existing=skip_existing, hparams=hparams, no_alignments=no_alignments)
def preprocess_speaker(speaker_dir, out_dir: Path, skip_existing: bool, hparams, no_alignments: bool):
metadata = []
for book_dir in speaker_dir.glob("*"):
if no_alignments:
# Gather the utterance audios and texts
# LibriTTS uses .wav but we will include extensions for compatibility with other datasets
extensions = ["*.wav", "*.flac", "*.mp3"]
for extension in extensions:
wav_fpaths = book_dir.glob(extension)
for wav_fpath in wav_fpaths:
# Load the audio waveform
wav, _ = librosa.load(str(wav_fpath), hparams.sample_rate)
if hparams.rescale:
wav = wav / np.abs(wav).max() * hparams.rescaling_max
# Get the corresponding text
# Check for .txt (for compatibility with other datasets)
text_fpath = wav_fpath.with_suffix(".txt")
if not text_fpath.exists():
# Check for .normalized.txt (LibriTTS)
text_fpath = wav_fpath.with_suffix(".normalized.txt")
assert text_fpath.exists()
with text_fpath.open("r") as text_file:
text = "".join([line for line in text_file])
text = text.replace("\"", "")
text = text.strip()
# Process the utterance
metadata.append(process_utterance(wav, text, out_dir, str(wav_fpath.with_suffix("").name),
skip_existing, hparams))
else:
# Process alignment file (LibriSpeech support)
# Gather the utterance audios and texts
try:
alignments_fpath = next(book_dir.glob("*.alignment.txt"))
with alignments_fpath.open("r") as alignments_file:
alignments = [line.rstrip().split(" ") for line in alignments_file]
except StopIteration:
# A few alignment files will be missing
continue
# Iterate over each entry in the alignments file
for wav_fname, words, end_times in alignments:
wav_fpath = book_dir.joinpath(wav_fname + ".flac")
assert wav_fpath.exists()
words = words.replace("\"", "").split(",")
end_times = list(map(float, end_times.replace("\"", "").split(",")))
# Process each sub-utterance
wavs, texts = split_on_silences(wav_fpath, words, end_times, hparams)
for i, (wav, text) in enumerate(zip(wavs, texts)):
sub_basename = "%s_%02d" % (wav_fname, i)
metadata.append(process_utterance(wav, text, out_dir, sub_basename,
skip_existing, hparams))
return [m for m in metadata if m is not None]
def preprocess_data(wav_fpaths, mode, out_dir: Path, skip_existing: bool, hparams, no_alignments: bool):
assert mode in ["train", "dev"]
# Create a metadata file
metadata_fpath = out_dir.joinpath(f"{mode}.txt")
metadata_file = metadata_fpath.open("a", encoding="utf-8")
if no_alignments:
for wav_fpath in tqdm(wav_fpaths, desc=mode):
# Load the audio waveform
wav, _ = librosa.load(str(wav_fpath), hparams.sample_rate)
if hparams.rescale:
wav = wav / np.abs(wav).max() * hparams.rescaling_max
# Get the corresponding text
# Check for .txt (for compatibility with other datasets)
base_name = "_".join(wav_fpath.name.split(".")[0].split("_")[: -1]) + ".txt"
text_fpath = wav_fpath.with_name(base_name)
if not text_fpath.exists():
continue
with text_fpath.open("r") as text_file:
text = "".join([line for line in text_file])
text = text.replace("\"", "")
text = text.strip()
# Process the utterance
metadata = process_utterance(wav, text, out_dir, str(wav_fpath.with_suffix("").name), skip_existing, hparams, trim_silence=False)
if metadata is not None:
metadata_file.write("|".join(str(x) for x in metadata) + "\n")
metadata_file.close()
# Verify the contents of the metadata file
with metadata_fpath.open("r", encoding="utf-8") as metadata_file:
metadata = [line.split("|") for line in metadata_file]
mel_frames = sum([int(m[4]) for m in metadata])
timesteps = sum([int(m[3]) for m in metadata])
sample_rate = hparams.sample_rate
hours = (timesteps / sample_rate) / 3600
print(f"The {mode} dataset consists of %d utterances, %d mel frames, %d audio timesteps (%.2f hours)." %
(len(metadata), mel_frames, timesteps, hours))
print("Max input length (text chars): %d" % max(len(m[5]) for m in metadata))
print("Max mel frames length: %d" % max(int(m[4]) for m in metadata))
print("Max audio timesteps length: %d" % max(int(m[3]) for m in metadata))
def split_on_silences(wav_fpath, words, end_times, hparams):
# Load the audio waveform
wav, _ = librosa.load(str(wav_fpath), hparams.sample_rate)
if hparams.rescale:
wav = wav / np.abs(wav).max() * hparams.rescaling_max
words = np.array(words)
start_times = np.array([0.0] + end_times[:-1])
end_times = np.array(end_times)
assert len(words) == len(end_times) == len(start_times)
assert words[0] == "" and words[-1] == ""
# Find pauses that are too long
mask = (words == "") & (end_times - start_times >= hparams.silence_min_duration_split)
mask[0] = mask[-1] = True
breaks = np.where(mask)[0]
# Profile the noise from the silences and perform noise reduction on the waveform
silence_times = [[start_times[i], end_times[i]] for i in breaks]
silence_times = (np.array(silence_times) * hparams.sample_rate).astype(np.int)
noisy_wav = np.concatenate([wav[stime[0]:stime[1]] for stime in silence_times])
if len(noisy_wav) > hparams.sample_rate * 0.02:
profile = logmmse.profile_noise(noisy_wav, hparams.sample_rate)
wav = logmmse.denoise(wav, profile, eta=0)
# Re-attach segments that are too short
segments = list(zip(breaks[:-1], breaks[1:]))
segment_durations = [start_times[end] - end_times[start] for start, end in segments]
i = 0
while i < len(segments) and len(segments) > 1:
if segment_durations[i] < hparams.utterance_min_duration:
# See if the segment can be re-attached with the right or the left segment
left_duration = float("inf") if i == 0 else segment_durations[i - 1]
right_duration = float("inf") if i == len(segments) - 1 else segment_durations[i + 1]
joined_duration = segment_durations[i] + min(left_duration, right_duration)
# Do not re-attach if it causes the joined utterance to be too long
if joined_duration > hparams.hop_size * hparams.max_mel_frames / hparams.sample_rate:
i += 1
continue
# Re-attach the segment with the neighbour of shortest duration
j = i - 1 if left_duration <= right_duration else i
segments[j] = (segments[j][0], segments[j + 1][1])
segment_durations[j] = joined_duration
del segments[j + 1], segment_durations[j + 1]
else:
i += 1
# Split the utterance
segment_times = [[end_times[start], start_times[end]] for start, end in segments]
segment_times = (np.array(segment_times) * hparams.sample_rate).astype(np.int)
wavs = [wav[segment_time[0]:segment_time[1]] for segment_time in segment_times]
texts = [" ".join(words[start + 1:end]).replace(" ", " ") for start, end in segments]
# # DEBUG: play the audio segments (run with -n=1)
# import sounddevice as sd
# if len(wavs) > 1:
# print("This sentence was split in %d segments:" % len(wavs))
# else:
# print("There are no silences long enough for this sentence to be split:")
# for wav, text in zip(wavs, texts):
# # Pad the waveform with 1 second of silence because sounddevice tends to cut them early
# # when playing them. You shouldn't need to do that in your parsers.
# wav = np.concatenate((wav, [0] * 16000))
# print("\t%s" % text)
# sd.play(wav, 16000, blocking=True)
# print("")
return wavs, texts
def process_utterance(wav: np.ndarray, text: str, out_dir: Path, basename: str,
skip_existing: bool, hparams, trim_silence=True):
## FOR REFERENCE:
# For you not to lose your head if you ever wish to change things here or implement your own
# synthesizer.
# - Both the audios and the mel spectrograms are saved as numpy arrays
# - There is no processing done to the audios that will be saved to disk beyond volume
# normalization (in split_on_silences)
# - However, pre-emphasis is applied to the audios before computing the mel spectrogram. This
# is why we re-apply it on the audio on the side of the vocoder.
# - Librosa pads the waveform before computing the mel spectrogram. Here, the waveform is saved
# without extra padding. This means that you won't have an exact relation between the length
# of the wav and of the mel spectrogram. See the vocoder data loader.
# Skip existing utterances if needed
mel_fpath = out_dir.joinpath("mels", "mel-%s.npy" % basename)
wav_fpath = out_dir.joinpath("audio", "audio-%s.npy" % basename)
if skip_existing and mel_fpath.exists() and wav_fpath.exists():
return None
# Trim silence
wav = encoder_infer.preprocess_wav(wav, normalize=False, trim_silence=trim_silence)
# Skip utterances that are too short
if len(wav) < hparams.utterance_min_duration * hparams.sample_rate:
return None
# Compute the mel spectrogram
mel_spectrogram = audio.melspectrogram(wav, hparams).astype(np.float32)
mel_frames = mel_spectrogram.shape[1]
# Skip utterances that are too long
if mel_frames > hparams.max_mel_frames and hparams.clip_mels_length:
return None
# Write the spectrogram, embed and audio to disk
np.save(mel_fpath, mel_spectrogram.T, allow_pickle=False)
np.save(wav_fpath, wav, allow_pickle=False)
# Return a tuple describing this training example
return wav_fpath.name, mel_fpath.name, "embed-%s.npy" % basename, len(wav), mel_frames, text
def embed_utterance(fpaths, encoder_model_fpath):
if not encoder_infer.is_loaded():
encoder_infer.load_model(encoder_model_fpath)
# Compute the speaker embedding of the utterance
wav_fpath, embed_fpath = fpaths
wav = np.load(wav_fpath)
wav = encoder_infer.preprocess_wav(wav)
embed = encoder_infer.embed_utterance(wav)
np.save(embed_fpath, embed, allow_pickle=False)
def create_embeddings(synthesizer_root: Path, encoder_model_fpath: Path, n_processes: int):
# create train embeddings
train_wav_dir = synthesizer_root.joinpath("train/audio")
train_metadata_fpath = synthesizer_root.joinpath("train/train.txt")
assert train_wav_dir.exists() and train_metadata_fpath.exists()
train_embed_dir = synthesizer_root.joinpath("train/embeds")
train_embed_dir.mkdir(exist_ok=True)
# Gather the input wave filepath and the target output embed filepath
with train_metadata_fpath.open("r") as metadata_file:
metadata = [line.split("|") for line in metadata_file]
fpaths = [(train_wav_dir.joinpath(m[0]), train_embed_dir.joinpath(m[2])) for m in metadata]
# TODO: improve on the multiprocessing, it's terrible. Disk I/O is the bottleneck here.
# Embed the utterances in separate threads
func = partial(embed_utterance, encoder_model_fpath=encoder_model_fpath)
job = Pool(n_processes).imap(func, fpaths)
list(tqdm(job, "Embedding", len(fpaths), unit="utterances"))
# create dev embeddings
dev_wav_dir = synthesizer_root.joinpath("dev/audio")
dev_metadata_fpath = synthesizer_root.joinpath("dev/dev.txt")
assert dev_wav_dir.exists() and dev_metadata_fpath.exists()
dev_embed_dir = synthesizer_root.joinpath("dev/embeds")
dev_embed_dir.mkdir(exist_ok=True)
# Gather the input wave filepath and the target output embed filepath
with dev_metadata_fpath.open("r") as metadata_file:
metadata = [line.split("|") for line in metadata_file]
fpaths = [(dev_wav_dir.joinpath(m[0]), dev_embed_dir.joinpath(m[2])) for m in metadata]
# TODO: improve on the multiprocessing, it's terrible. Disk I/O is the bottleneck here.
# Embed the utterances in separate threads
func = partial(embed_utterance, encoder_model_fpath=encoder_model_fpath)
job = Pool(n_processes).imap(func, fpaths)
list(tqdm(job, "Embedding", len(fpaths), unit="utterances"))