CelebChat / rtvc /vocoder /vocoder_dataset.py
lhzstar
initial commits
6bc94ac
from torch.utils.data import Dataset
from pathlib import Path
from vocoder import audio
import vocoder.hparams as hp
import numpy as np
import torch
class VocoderDataset(Dataset):
def __init__(self, metadata_fpath: Path, mel_dir: Path, wav_dir: Path):
print("Using inputs from:\n\t%s\n\t%s\n\t%s" % (metadata_fpath, mel_dir, wav_dir))
with metadata_fpath.open("r") as metadata_file:
metadata = [line.split("|") for line in metadata_file]
gta_fnames = [x[1] for x in metadata if int(x[4])]
gta_fpaths = [mel_dir.joinpath(fname) for fname in gta_fnames]
wav_fnames = [x[0] for x in metadata if int(x[4])]
wav_fpaths = [wav_dir.joinpath(fname) for fname in wav_fnames]
self.samples_fpaths = list(zip(gta_fpaths, wav_fpaths))
print("Found %d samples" % len(self.samples_fpaths))
def __getitem__(self, index):
mel_path, wav_path = self.samples_fpaths[index]
# Load the mel spectrogram and adjust its range to [-1, 1]
mel = np.load(mel_path).T.astype(np.float32) / hp.mel_max_abs_value
# Load the wav
wav = np.load(wav_path)
if hp.apply_preemphasis:
wav = audio.pre_emphasis(wav)
wav = np.clip(wav, -1, 1)
# Fix for missing padding # TODO: settle on whether this is any useful
r_pad = (len(wav) // hp.hop_length + 1) * hp.hop_length - len(wav)
wav = np.pad(wav, (0, r_pad), mode='constant')
assert len(wav) >= mel.shape[1] * hp.hop_length
wav = wav[:mel.shape[1] * hp.hop_length]
assert len(wav) % hp.hop_length == 0
# Quantize the wav
if hp.voc_mode == 'RAW':
if hp.mu_law:
quant = audio.encode_mu_law(wav, mu=2 ** hp.bits)
else:
quant = audio.float_2_label(wav, bits=hp.bits)
elif hp.voc_mode == 'MOL':
quant = audio.float_2_label(wav, bits=16)
return mel.astype(np.float32), quant.astype(np.int64)
def __len__(self):
return len(self.samples_fpaths)
def collate_vocoder(batch):
mel_win = hp.voc_seq_len // hp.hop_length + 2 * hp.voc_pad
max_offsets = [x[0].shape[-1] -2 - (mel_win + 2 * hp.voc_pad) for x in batch]
mel_offsets = [np.random.randint(0, offset) for offset in max_offsets]
sig_offsets = [(offset + hp.voc_pad) * hp.hop_length for offset in mel_offsets]
mels = [x[0][:, mel_offsets[i]:mel_offsets[i] + mel_win] for i, x in enumerate(batch)]
labels = [x[1][sig_offsets[i]:sig_offsets[i] + hp.voc_seq_len + 1] for i, x in enumerate(batch)]
mels = np.stack(mels).astype(np.float32)
labels = np.stack(labels).astype(np.int64)
mels = torch.tensor(mels)
labels = torch.tensor(labels).long()
x = labels[:, :hp.voc_seq_len]
y = labels[:, 1:]
bits = 16 if hp.voc_mode == 'MOL' else hp.bits
x = audio.label_2_float(x.float(), bits)
if hp.voc_mode == 'MOL' :
y = audio.label_2_float(y.float(), bits)
return x, y, mels