lhzstar commited on
Commit
abca9bf
·
1 Parent(s): 370e3bc

new commits

Browse files
Files changed (40) hide show
  1. README.md +33 -0
  2. app.py +1 -1
  3. celebbot.py +5 -8
  4. img/flow_chart.jpg +0 -0
  5. requirements.txt +2 -1
  6. run_cli.py +2 -1
  7. run_eval.py +29 -3
  8. unlimiformer/__init__.py +2 -0
  9. unlimiformer/configs/data/contract_nli.json +12 -0
  10. unlimiformer/configs/data/gov_report.json +12 -0
  11. unlimiformer/configs/data/hotpotqa.json +12 -0
  12. unlimiformer/configs/data/hotpotqa_second_only.json +12 -0
  13. unlimiformer/configs/data/narative_qa.json +12 -0
  14. unlimiformer/configs/data/qasper.json +12 -0
  15. unlimiformer/configs/data/qmsum.json +12 -0
  16. unlimiformer/configs/data/quality.json +12 -0
  17. unlimiformer/configs/data/squad.json +12 -0
  18. unlimiformer/configs/data/squad_ordered_distractors.json +12 -0
  19. unlimiformer/configs/data/squad_shuffled_distractors.json +12 -0
  20. unlimiformer/configs/data/summ_screen_fd.json +12 -0
  21. unlimiformer/configs/model/bart_base_sled.json +6 -0
  22. unlimiformer/configs/model/bart_large_sled.json +6 -0
  23. unlimiformer/configs/model/primera_govreport_sled.json +9 -0
  24. unlimiformer/configs/training/base_training_args.json +22 -0
  25. unlimiformer/index_building.py +161 -0
  26. unlimiformer/metrics/__init__.py +1 -0
  27. unlimiformer/metrics/metrics.py +182 -0
  28. unlimiformer/model.py +1157 -0
  29. unlimiformer/random_training_unlimiformer.py +224 -0
  30. unlimiformer/run.py +1180 -0
  31. unlimiformer/run_generation.py +577 -0
  32. unlimiformer/usage.py +91 -0
  33. unlimiformer/utils/__init__.py +0 -0
  34. unlimiformer/utils/config.py +13 -0
  35. unlimiformer/utils/custom_hf_argument_parser.py +39 -0
  36. unlimiformer/utils/custom_seq2seq_trainer.py +328 -0
  37. unlimiformer/utils/decoding.py +59 -0
  38. unlimiformer/utils/duplicates.py +15 -0
  39. unlimiformer/utils/override_training_args.py +106 -0
  40. utils.py +24 -2
README.md CHANGED
@@ -11,3 +11,36 @@ license: apache-2.0
11
  ---
12
 
13
  # CelebChat
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  # CelebChat
14
+ CelebChat is a Hugging Face Space where the user can talk with nearly 50 virtual celebrities.
15
+
16
+ ## System details
17
+ ![alt text](https://github.com/liuhaozhe6788/CelebChat/blob/main/img/flow_chart.jpg?raw=true)
18
+
19
+ ## Citation
20
+ ```
21
+ @article{bertsch2023unlimiformer,
22
+ title={Unlimiformer: Long-Range Transformers with Unlimited Length Input},
23
+ author={Bertsch, Amanda and Alon, Uri and Neubig, Graham and Gormley, Matthew R},
24
+ journal={arXiv preprint arXiv:2305.01625},
25
+ year={2023}
26
+ }
27
+
28
+ @misc{https://doi.org/10.48550/arxiv.2210.11416,
29
+ doi = {10.48550/ARXIV.2210.11416},
30
+
31
+ url = {https://arxiv.org/abs/2210.11416},
32
+
33
+ author = {Chung, Hyung Won and Hou, Le and Longpre, Shayne and Zoph, Barret and Tay, Yi and Fedus, William and Li, Eric and Wang, Xuezhi and Dehghani, Mostafa and Brahma, Siddhartha and Webson, Albert and Gu, Shixiang Shane and Dai, Zhuyun and Suzgun, Mirac and Chen, Xinyun and Chowdhery, Aakanksha and Narang, Sharan and Mishra, Gaurav and Yu, Adams and Zhao, Vincent and Huang, Yanping and Dai, Andrew and Yu, Hongkun and Petrov, Slav and Chi, Ed H. and Dean, Jeff and Devlin, Jacob and Roberts, Adam and Zhou, Denny and Le, Quoc V. and Wei, Jason},
34
+
35
+ keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
36
+
37
+ title = {Scaling Instruction-Finetuned Language Models},
38
+
39
+ publisher = {arXiv},
40
+
41
+ year = {2022},
42
+
43
+ copyright = {Creative Commons Attribution 4.0 International}
44
+ }
45
+
46
+ ```
app.py CHANGED
@@ -64,7 +64,7 @@ def main():
64
  st.session_state["celeb_bot"] = CelebBot(st.session_state["celeb_name"],
65
  celeb_gender,
66
  get_tokenizer(st.session_state["QA_model_path"]),
67
- get_seq2seq_model(st.session_state["QA_model_path"]) if "flan-t5" in st.session_state["QA_model_path"] else get_causal_model(st.session_state["QA_model_path"]),
68
  get_tokenizer(st.session_state["sentTr_model_path"]),
69
  get_auto_model(st.session_state["sentTr_model_path"]),
70
  *preprocess_text(st.session_state["celeb_name"], knowledge, "en_core_web_lg")
 
64
  st.session_state["celeb_bot"] = CelebBot(st.session_state["celeb_name"],
65
  celeb_gender,
66
  get_tokenizer(st.session_state["QA_model_path"]),
67
+ get_seq2seq_model(st.session_state["QA_model_path"], _tokenizer=get_tokenizer(st.session_state["QA_model_path"])) if "flan-t5" in st.session_state["QA_model_path"] else get_causal_model(st.session_state["QA_model_path"]),
68
  get_tokenizer(st.session_state["sentTr_model_path"]),
69
  get_auto_model(st.session_state["sentTr_model_path"]),
70
  *preprocess_text(st.session_state["celeb_name"], knowledge, "en_core_web_lg")
celebbot.py CHANGED
@@ -2,21 +2,17 @@ import datetime
2
  import numpy as np
3
  import torch
4
  import torch.nn.functional as F
5
- import os
6
- import json
7
  import speech_recognition as sr
8
  import re
9
  import time
10
- import spacy
11
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModel
12
  import pickle
13
- import streamlit as st
14
  from sklearn.metrics.pairwise import cosine_similarity
15
 
16
 
17
  # Build the AI
18
  class CelebBot():
19
- def __init__(self, name, gender, QA_tokenizer, QA_model, sentTr_tokenizer, sentTr_model, spacy_model, knowledge_sents):
 
20
  self.name = name
21
  self.gender = gender
22
  print("--- starting up", self.name, self.gender, "---")
@@ -29,6 +25,7 @@ class CelebBot():
29
  self.spacy_model = spacy_model
30
 
31
  self.all_knowledge = knowledge_sents
 
32
 
33
  def speech_to_text(self):
34
  recognizer = sr.Recognizer()
@@ -83,7 +80,7 @@ class CelebBot():
83
  all_knowledge_embeddings = self.sentence_embeds_inference(self.all_knowledge)
84
  similarity = cosine_similarity(all_knowledge_embeddings.cpu(), question_embeddings.cpu())
85
  similarity = np.reshape(similarity, (1, -1))[0]
86
- K = min(8, len(self.all_knowledge))
87
  top_K = np.sort(np.argpartition(similarity, -K)[-K: ])
88
  all_knowledge_assertions = np.array(self.all_knowledge)[top_K]
89
 
@@ -175,7 +172,7 @@ class CelebBot():
175
  knowledge = self.retrieve_knowledge_assertions()
176
 
177
  query = f"Context: {instruction} {knowledge}\n\nChat History: {chat_his}Question: {self.text}\n\nAnswer:"
178
- input_ids = self.QA_tokenizer(f"{query}", return_tensors="pt").input_ids.to(self.QA_model.device)
179
  outputs = self.QA_model.generate(input_ids, max_length=1024, min_length=8, repetition_penalty=2.5)
180
  self.text = self.QA_tokenizer.decode(outputs[0], skip_special_tokens=True)
181
  return self.text
 
2
  import numpy as np
3
  import torch
4
  import torch.nn.functional as F
 
 
5
  import speech_recognition as sr
6
  import re
7
  import time
 
 
8
  import pickle
 
9
  from sklearn.metrics.pairwise import cosine_similarity
10
 
11
 
12
  # Build the AI
13
  class CelebBot():
14
+
15
+ def __init__(self, name, gender, QA_tokenizer, QA_model, sentTr_tokenizer, sentTr_model, spacy_model, knowledge_sents, top_k = 8):
16
  self.name = name
17
  self.gender = gender
18
  print("--- starting up", self.name, self.gender, "---")
 
25
  self.spacy_model = spacy_model
26
 
27
  self.all_knowledge = knowledge_sents
28
+ self.top_k = top_k
29
 
30
  def speech_to_text(self):
31
  recognizer = sr.Recognizer()
 
80
  all_knowledge_embeddings = self.sentence_embeds_inference(self.all_knowledge)
81
  similarity = cosine_similarity(all_knowledge_embeddings.cpu(), question_embeddings.cpu())
82
  similarity = np.reshape(similarity, (1, -1))[0]
83
+ K = min(self.top_k, len(self.all_knowledge))
84
  top_K = np.sort(np.argpartition(similarity, -K)[-K: ])
85
  all_knowledge_assertions = np.array(self.all_knowledge)[top_K]
86
 
 
172
  knowledge = self.retrieve_knowledge_assertions()
173
 
174
  query = f"Context: {instruction} {knowledge}\n\nChat History: {chat_his}Question: {self.text}\n\nAnswer:"
175
+ input_ids = self.QA_tokenizer(f"{query}", truncation=False, return_tensors="pt").input_ids.to(self.QA_model.device)
176
  outputs = self.QA_model.generate(input_ids, max_length=1024, min_length=8, repetition_penalty=2.5)
177
  self.text = self.QA_tokenizer.decode(outputs[0], skip_special_tokens=True)
178
  return self.text
img/flow_chart.jpg ADDED
requirements.txt CHANGED
@@ -30,4 +30,5 @@ sentence-transformers==2.2.2
30
  evaluate==0.4.1
31
  https://huggingface.co/spacy/en_core_web_lg/resolve/main/en_core_web_lg-any-py3-none-any.whl
32
  protobuf==3.20
33
- streamlit_mic_recorder==0.0.2
 
 
30
  evaluate==0.4.1
31
  https://huggingface.co/spacy/en_core_web_lg/resolve/main/en_core_web_lg-any-py3-none-any.whl
32
  protobuf==3.20
33
+ streamlit_mic_recorder==0.0.2
34
+ faiss-cpu==1.7.4
run_cli.py CHANGED
@@ -5,7 +5,7 @@ import spacy
5
  from celebbot import CelebBot
6
  from utils import *
7
 
8
- DEBUG = False
9
  QA_MODEL_ID = "google/flan-t5-large"
10
  SENTTR_MODEL_ID = "sentence-transformers/all-mpnet-base-v2"
11
 
@@ -52,6 +52,7 @@ def main():
52
  print("me --> ", ai.text)
53
 
54
  answers.append(ai.question_answer())
 
55
 
56
  if not DEBUG:
57
  ai.text_to_speech()
 
5
  from celebbot import CelebBot
6
  from utils import *
7
 
8
+ DEBUG = True
9
  QA_MODEL_ID = "google/flan-t5-large"
10
  SENTTR_MODEL_ID = "sentence-transformers/all-mpnet-base-v2"
11
 
 
52
  print("me --> ", ai.text)
53
 
54
  answers.append(ai.question_answer())
55
+ print("bot --> ", ai.text)
56
 
57
  if not DEBUG:
58
  ai.text_to_speech()
run_eval.py CHANGED
@@ -4,15 +4,19 @@ import spacy
4
  import json
5
  import evaluate
6
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModel
 
7
  import torch
8
 
9
  from utils import *
10
  from celebbot import CelebBot
11
 
12
- QA_MODEL_ID = "google/flan-t5-large"
13
  SENTTR_MODEL_ID = "sentence-transformers/all-mpnet-base-v2"
14
  celeb_names = ["Cate Blanchett", "David Beckham", "Emma Watson", "Lady Gaga", "Madonna", "Mark Zuckerberg"]
15
 
 
 
 
16
  celeb_data = get_celeb_data("data.json")
17
  references = [val['answers'] for key, val in list(celeb_data.items()) if key in celeb_names]
18
  references = list(itertools.chain.from_iterable(references))
@@ -20,7 +24,29 @@ predictions = []
20
 
21
  device = 'cpu'
22
  QA_tokenizer = AutoTokenizer.from_pretrained(QA_MODEL_ID)
23
- QA_model = AutoModelForSeq2SeqLM.from_pretrained(QA_MODEL_ID).to(device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  sentTr_tokenizer = AutoTokenizer.from_pretrained(SENTTR_MODEL_ID)
25
  sentTr_model = AutoModel.from_pretrained(SENTTR_MODEL_ID).to(device)
26
 
@@ -37,7 +63,7 @@ for celeb_name in celeb_names:
37
  spacy_model = spacy.load("en_core_web_lg")
38
  knowledge_sents = [i.text.strip() for i in spacy_model(knowledge).sents]
39
 
40
- ai = CelebBot(celeb_name, gender, QA_tokenizer, QA_model, sentTr_tokenizer, sentTr_model, spacy_model, knowledge_sents)
41
  for q in celeb_data[celeb_name]["questions"]:
42
  ai.text = q
43
  response = ai.question_answer()
 
4
  import json
5
  import evaluate
6
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModel
7
+ from unlimiformer import Unlimiformer, UnlimiformerArguments
8
  import torch
9
 
10
  from utils import *
11
  from celebbot import CelebBot
12
 
13
+ QA_MODEL_ID = "google/flan-t5-xl"
14
  SENTTR_MODEL_ID = "sentence-transformers/all-mpnet-base-v2"
15
  celeb_names = ["Cate Blanchett", "David Beckham", "Emma Watson", "Lady Gaga", "Madonna", "Mark Zuckerberg"]
16
 
17
+ USE_UNLIMIFORMER = True
18
+ TOP_K = 8
19
+
20
  celeb_data = get_celeb_data("data.json")
21
  references = [val['answers'] for key, val in list(celeb_data.items()) if key in celeb_names]
22
  references = list(itertools.chain.from_iterable(references))
 
24
 
25
  device = 'cpu'
26
  QA_tokenizer = AutoTokenizer.from_pretrained(QA_MODEL_ID)
27
+ QA_model = AutoModelForSeq2SeqLM.from_pretrained(QA_MODEL_ID)
28
+ if USE_UNLIMIFORMER:
29
+ defaults = UnlimiformerArguments()
30
+ unlimiformer_kwargs = {
31
+ 'layer_begin': defaults.layer_begin,
32
+ 'layer_end': defaults.layer_end,
33
+ 'unlimiformer_head_num': defaults.unlimiformer_head_num,
34
+ 'exclude_attention': defaults.unlimiformer_exclude,
35
+ 'chunk_overlap': defaults.unlimiformer_chunk_overlap,
36
+ 'model_encoder_max_len': defaults.unlimiformer_chunk_size,
37
+ 'verbose': defaults.unlimiformer_verbose, 'tokenizer': QA_tokenizer,
38
+ 'unlimiformer_training': defaults.unlimiformer_training,
39
+ 'use_datastore': defaults.use_datastore,
40
+ 'flat_index': defaults.flat_index,
41
+ 'test_datastore': defaults.test_datastore,
42
+ 'reconstruct_embeddings': defaults.reconstruct_embeddings,
43
+ 'gpu_datastore': defaults.gpu_datastore,
44
+ 'gpu_index': defaults.gpu_index
45
+ }
46
+ QA_model =Unlimiformer.convert_model(QA_model, **unlimiformer_kwargs).to(device)
47
+ else:
48
+ QA_model = QA_model.to(device)
49
+
50
  sentTr_tokenizer = AutoTokenizer.from_pretrained(SENTTR_MODEL_ID)
51
  sentTr_model = AutoModel.from_pretrained(SENTTR_MODEL_ID).to(device)
52
 
 
63
  spacy_model = spacy.load("en_core_web_lg")
64
  knowledge_sents = [i.text.strip() for i in spacy_model(knowledge).sents]
65
 
66
+ ai = CelebBot(celeb_name, gender, QA_tokenizer, QA_model, sentTr_tokenizer, sentTr_model, spacy_model, knowledge_sents, top_k=TOP_K)
67
  for q in celeb_data[celeb_name]["questions"]:
68
  ai.text = q
69
  response = ai.question_answer()
unlimiformer/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .model import Unlimiformer
2
+ from .usage import UnlimiformerArguments
unlimiformer/configs/data/contract_nli.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "tau/sled",
3
+ "dataset_config_name": "contract_nli",
4
+ "max_source_length": 16384,
5
+ "max_prefix_length": 64,
6
+ "pad_prefix": true,
7
+ "generation_max_length": 8,
8
+ "num_train_epochs": 20,
9
+ "metric_names": ["exact_match"],
10
+ "metric_for_best_model": "exact_match",
11
+ "greater_is_better": true
12
+ }
unlimiformer/configs/data/gov_report.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "tau/sled",
3
+ "dataset_config_name": "gov_report",
4
+ "max_source_length": 16384,
5
+ "generation_max_length": 1024,
6
+ "max_prefix_length": 0,
7
+ "pad_prefix": false,
8
+ "num_train_epochs": 10,
9
+ "metric_names": ["rouge"],
10
+ "metric_for_best_model": "rouge/geometric_mean",
11
+ "greater_is_better": true
12
+ }
unlimiformer/configs/data/hotpotqa.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "tau/sled",
3
+ "dataset_config_name": "hotpotqa",
4
+ "max_source_length": 16384,
5
+ "max_prefix_length": 64,
6
+ "pad_prefix": true,
7
+ "generation_max_length": 128,
8
+ "num_train_epochs": 9,
9
+ "metric_names": ["f1", "exact_match"],
10
+ "metric_for_best_model": "f1",
11
+ "greater_is_better": true
12
+ }
unlimiformer/configs/data/hotpotqa_second_only.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "tau/sled",
3
+ "dataset_config_name": "hotpotqa_second_only",
4
+ "max_source_length": 16384,
5
+ "max_prefix_length": 64,
6
+ "pad_prefix": true,
7
+ "generation_max_length": 128,
8
+ "num_train_epochs": 9,
9
+ "metric_names": ["f1", "exact_match"],
10
+ "metric_for_best_model": "f1",
11
+ "greater_is_better": true
12
+ }
unlimiformer/configs/data/narative_qa.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "tau/sled",
3
+ "dataset_config_name": "narrative_qa",
4
+ "max_source_length": 16384,
5
+ "max_prefix_length": 64,
6
+ "pad_prefix": true,
7
+ "num_train_epochs": 2,
8
+ "generation_max_length": 128,
9
+ "metric_names": ["f1"],
10
+ "metric_for_best_model": "f1",
11
+ "greater_is_better": true
12
+ }
unlimiformer/configs/data/qasper.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "tau/sled",
3
+ "dataset_config_name": "qasper",
4
+ "max_source_length": 16384,
5
+ "max_prefix_length": 64,
6
+ "pad_prefix": true,
7
+ "generation_max_length": 128,
8
+ "num_train_epochs": 20,
9
+ "metric_names": ["f1"],
10
+ "metric_for_best_model": "f1",
11
+ "greater_is_better": true
12
+ }
unlimiformer/configs/data/qmsum.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "tau/sled",
3
+ "dataset_config_name": "qmsum",
4
+ "max_source_length": 16384,
5
+ "max_prefix_length": 64,
6
+ "pad_prefix": true,
7
+ "num_train_epochs": 20,
8
+ "generation_max_length": 1024,
9
+ "metric_names": ["rouge"],
10
+ "metric_for_best_model": "rouge/geometric_mean",
11
+ "greater_is_better": true
12
+ }
unlimiformer/configs/data/quality.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "tau/sled",
3
+ "dataset_config_name": "quality",
4
+ "max_source_length": 16384,
5
+ "max_prefix_length": 160,
6
+ "pad_prefix": true,
7
+ "num_train_epochs": 20,
8
+ "generation_max_length": 128,
9
+ "metric_names": ["exact_match"],
10
+ "metric_for_best_model": "exact_match",
11
+ "greater_is_better": true
12
+ }
unlimiformer/configs/data/squad.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "tau/sled",
3
+ "dataset_config_name": "squad",
4
+ "max_source_length": 16384,
5
+ "max_prefix_length": 64,
6
+ "pad_prefix": true,
7
+ "num_train_epochs": 3,
8
+ "generation_max_length": 128,
9
+ "metric_names": ["f1", "exact_match"],
10
+ "metric_for_best_model": "f1",
11
+ "greater_is_better": true
12
+ }
unlimiformer/configs/data/squad_ordered_distractors.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "tau/sled",
3
+ "dataset_config_name": "squad_ordered_distractors",
4
+ "max_source_length": 16384,
5
+ "max_prefix_length": 64,
6
+ "pad_prefix": true,
7
+ "num_train_epochs": 3,
8
+ "generation_max_length": 128,
9
+ "metric_names": ["f1", "exact_match"],
10
+ "metric_for_best_model": "f1",
11
+ "greater_is_better": true
12
+ }
unlimiformer/configs/data/squad_shuffled_distractors.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "tau/sled",
3
+ "dataset_config_name": "squad_shuffled_distractors",
4
+ "max_source_length": 16384,
5
+ "max_prefix_length": 64,
6
+ "pad_prefix": true,
7
+ "num_train_epochs": 3,
8
+ "generation_max_length": 128,
9
+ "metric_names": ["f1", "exact_match"],
10
+ "metric_for_best_model": "f1",
11
+ "greater_is_better": true
12
+ }
unlimiformer/configs/data/summ_screen_fd.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "tau/sled",
3
+ "dataset_config_name": "summ_screen_fd",
4
+ "max_source_length": 16384,
5
+ "max_prefix_length": 0,
6
+ "pad_prefix": false,
7
+ "num_train_epochs": 10,
8
+ "generation_max_length": 1024,
9
+ "metric_names": ["rouge"],
10
+ "metric_for_best_model": "rouge/geometric_mean",
11
+ "greater_is_better": true
12
+ }
unlimiformer/configs/model/bart_base_sled.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "model_name_or_path": "tau/bart-base-sled",
3
+ "use_auth_token": false,
4
+ "max_target_length": 1024,
5
+ "fp16": true
6
+ }
unlimiformer/configs/model/bart_large_sled.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "model_name_or_path": "tau/bart-large-sled",
3
+ "use_auth_token": false,
4
+ "max_target_length": 1024,
5
+ "fp16": true
6
+ }
unlimiformer/configs/model/primera_govreport_sled.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "tau/sled",
3
+ "underlying_config": "allenai/PRIMERA",
4
+ "context_size": 4096,
5
+ "window_fraction": 0.5,
6
+ "prepend_prefix": true,
7
+ "encode_prefix": true,
8
+ "sliding_method": "dynamic"
9
+ }
unlimiformer/configs/training/base_training_args.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eval_steps_override": 0.5,
3
+ "save_steps_override": 0.5,
4
+ "evaluation_strategy": "steps",
5
+ "eval_fraction": 1000,
6
+ "predict_with_generate": true,
7
+ "gradient_checkpointing": true,
8
+ "do_train": true,
9
+ "do_eval": true,
10
+ "seed": 42,
11
+ "warmup_ratio": 0.1,
12
+ "save_total_limit": 2,
13
+ "preprocessing_num_workers": 1,
14
+ "load_best_model_at_end": true,
15
+ "lr_scheduler": "linear",
16
+ "adam_epsilon": 1e-6,
17
+ "adam_beta1": 0.9,
18
+ "adam_beta2": 0.98,
19
+ "weight_decay": 0.001,
20
+ "patience": 10,
21
+ "extra_metrics": "bertscore"
22
+ }
unlimiformer/index_building.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import faiss
2
+ import faiss.contrib.torch_utils
3
+ import time
4
+ import logging
5
+
6
+ import torch
7
+ import numpy as np
8
+
9
+ code_size = 64
10
+
11
+ class DatastoreBatch():
12
+ def __init__(self, dim, batch_size, flat_index=False, gpu_index=False, verbose=False, index_device=None) -> None:
13
+ self.indices = []
14
+ self.batch_size = batch_size
15
+ self.device = index_device if index_device is not None else torch.device('cuda' if gpu_index else 'cpu')
16
+ for i in range(batch_size):
17
+ self.indices.append(Datastore(dim, use_flat_index=flat_index, gpu_index=gpu_index, verbose=verbose, device=self.device))
18
+
19
+ def move_to_gpu(self):
20
+ for i in range(self.batch_size):
21
+ self.indices[i].move_to_gpu()
22
+
23
+ def add_keys(self, keys, num_keys_to_add_at_a_time=100000):
24
+ for i in range(self.batch_size):
25
+ self.indices[i].add_keys(keys[i], num_keys_to_add_at_a_time)
26
+
27
+ def train_index(self, keys):
28
+ for index, example_keys in zip(self.indices, keys):
29
+ index.train_index(example_keys)
30
+
31
+ def search(self, queries, k):
32
+ found_scores, found_values = [], []
33
+ for i in range(self.batch_size):
34
+ scores, values = self.indices[i].search(queries[i], k)
35
+ found_scores.append(scores)
36
+ found_values.append(values)
37
+ return torch.stack(found_scores, dim=0), torch.stack(found_values, dim=0)
38
+
39
+ def search_and_reconstruct(self, queries, k):
40
+ found_scores, found_values = [], []
41
+ found_vectors = []
42
+ for i in range(self.batch_size):
43
+ scores, values, vectors = self.indices[i].search_and_reconstruct(queries[i], k)
44
+ found_scores.append(scores)
45
+ found_values.append(values)
46
+ found_vectors.append(vectors)
47
+ return torch.stack(found_scores, dim=0), torch.stack(found_values, dim=0), torch.stack(found_vectors, dim=0)
48
+
49
+ class Datastore():
50
+ def __init__(self, dim, use_flat_index=False, gpu_index=False, verbose=False, device=None) -> None:
51
+ self.dimension = dim
52
+ self.device = device if device is not None else torch.device('cuda' if gpu_index else 'cpu')
53
+ self.logger = logging.getLogger('index_building')
54
+ self.logger.setLevel(20)
55
+ self.use_flat_index = use_flat_index
56
+ self.gpu_index = gpu_index
57
+
58
+ # Initialize faiss index
59
+ # TODO: is preprocessing efficient enough to spend time on?
60
+ if not use_flat_index:
61
+ self.index = faiss.IndexFlatIP(self.dimension) # inner product index because we use IP attention
62
+
63
+ # need to wrap in index ID map to enable add_with_ids
64
+ # self.index = faiss.IndexIDMap(self.index)
65
+
66
+ self.index_size = 0
67
+ # if self.gpu_index:
68
+ # self.move_to_gpu()
69
+
70
+ def move_to_gpu(self):
71
+ if self.use_flat_index:
72
+ # self.keys = self.keys.to(self.device)
73
+ return
74
+ else:
75
+ co = faiss.GpuClonerOptions()
76
+ co.useFloat16 = True
77
+ self.index = faiss.index_cpu_to_gpu(faiss.StandardGpuResources(), self.device.index, self.index, co)
78
+
79
+ def train_index(self, keys):
80
+ if self.use_flat_index:
81
+ self.add_keys(keys=keys, index_is_trained=True)
82
+ else:
83
+ keys = keys.cpu().float()
84
+ ncentroids = int(keys.shape[0] / 128)
85
+ self.index = faiss.IndexIVFPQ(self.index, self.dimension,
86
+ ncentroids, code_size, 8)
87
+ self.index.nprobe = min(32, ncentroids)
88
+ # if not self.gpu_index:
89
+ # keys = keys.cpu()
90
+
91
+ self.logger.info('Training index')
92
+ start_time = time.time()
93
+ self.index.train(keys)
94
+ self.logger.info(f'Training took {time.time() - start_time} s')
95
+ self.add_keys(keys=keys, index_is_trained=True)
96
+ # self.keys = None
97
+ if self.gpu_index:
98
+ self.move_to_gpu()
99
+
100
+ def add_keys(self, keys, num_keys_to_add_at_a_time=1000000, index_is_trained=False):
101
+ self.keys = keys
102
+ if not self.use_flat_index and index_is_trained:
103
+ start = 0
104
+ while start < keys.shape[0]:
105
+ end = min(len(keys), start + num_keys_to_add_at_a_time)
106
+ to_add = keys[start:end]
107
+ # if not self.gpu_index:
108
+ # to_add = to_add.cpu()
109
+ # self.index.add_with_ids(to_add, torch.arange(start+self.index_size, end+self.index_size))
110
+ self.index.add(to_add)
111
+ self.index_size += end - start
112
+ start += end
113
+ if (start % 1000000) == 0:
114
+ self.logger.info(f'Added {start} tokens so far')
115
+ # else:
116
+ # self.keys.append(keys)
117
+
118
+ # self.logger.info(f'Adding total {start} keys')
119
+ # self.logger.info(f'Adding took {time.time() - start_time} s')
120
+
121
+ def search_and_reconstruct(self, queries, k):
122
+ if len(queries.shape) == 1: # searching for only 1 vector, add one extra dim
123
+ self.logger.info("Searching for a single vector; unsqueezing")
124
+ queries = queries.unsqueeze(0)
125
+ # self.logger.info("Searching with reconstruct")
126
+ assert queries.shape[-1] == self.dimension # query vectors are same shape as "key" vectors
127
+ scores, values, vectors = self.index.index.search_and_reconstruct(queries.cpu().detach(), k)
128
+ # self.logger.info("Searching done")
129
+ return scores, values, vectors
130
+
131
+ def search(self, queries, k):
132
+ # model_device = queries.device
133
+ # model_dtype = queries.dtype
134
+ if len(queries.shape) == 1: # searching for only 1 vector, add one extra dim
135
+ self.logger.info("Searching for a single vector; unsqueezing")
136
+ queries = queries.unsqueeze(0)
137
+ assert queries.shape[-1] == self.dimension # query vectors are same shape as "key" vectors
138
+ # if not self.gpu_index:
139
+ # queries = queries.cpu()
140
+ # else:
141
+ # queries = queries.to(self.device)
142
+ if self.use_flat_index:
143
+ if self.gpu_index:
144
+ scores, values = faiss.knn_gpu(faiss.StandardGpuResources(), queries, self.keys, k,
145
+ metric=faiss.METRIC_INNER_PRODUCT, device=self.device.index)
146
+ else:
147
+ scores, values = faiss.knn(queries, self.keys, k, metric=faiss.METRIC_INNER_PRODUCT)
148
+ scores = torch.from_numpy(scores).to(queries.dtype)
149
+ values = torch.from_numpy(values) #.to(model_dtype)
150
+ else:
151
+ scores, values = self.index.search(queries.float(), k)
152
+
153
+ # avoid returning -1 as a value
154
+ # TODO: get a handle on the attention mask and mask the values that were -1
155
+ values = torch.where(torch.logical_or(values < 0, values >= self.keys.shape[0]), torch.zeros_like(values), values)
156
+ # self.logger.info("Searching done")
157
+ # return scores.to(model_dtype).to(model_device), values.to(model_device)
158
+ return scores, values
159
+
160
+
161
+
unlimiformer/metrics/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .metrics import load_metric, download_metric
unlimiformer/metrics/metrics.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Dict
2
+ import os
3
+ import importlib
4
+ from abc import ABC, abstractmethod
5
+ import inspect
6
+ import shutil
7
+
8
+ import numpy as np
9
+
10
+ from utils.decoding import decode
11
+ from datasets import load_metric as hf_load_metric
12
+ from huggingface_hub import hf_hub_download
13
+
14
+
15
+ class Metric(ABC):
16
+ def __init__(self, **kwargs) -> None:
17
+ super().__init__()
18
+ self._kwargs = kwargs
19
+
20
+ self.prefix = os.path.splitext(os.path.basename(inspect.getfile(self.__class__)))[0]
21
+ self.requires_decoded = False
22
+
23
+ def __call__(self, id_to_pred, id_to_labels, is_decoded=False):
24
+ if self.requires_decoded and is_decoded is False:
25
+ id_to_pred = self._decode(id_to_pred)
26
+ id_to_labels = self._decode(id_to_labels)
27
+ return self._compute_metrics(id_to_pred, id_to_labels)
28
+
29
+ @abstractmethod
30
+ def _compute_metrics(self, id_to_pred, id_to_labels) -> Dict[str, float]:
31
+ return
32
+
33
+ def _decode(self, id_to_something):
34
+ tokenizer = self._kwargs.get("tokenizer")
35
+ data_args = self._kwargs.get("data_args")
36
+ return decode(id_to_something, tokenizer, data_args)
37
+
38
+
39
+ class MetricCollection(Metric):
40
+ def __init__(self, metrics: List[Metric], **kwargs):
41
+ super().__init__(**kwargs)
42
+ self._metrics = metrics
43
+
44
+ def __call__(self, id_to_pred, id_to_labels):
45
+ return self._compute_metrics(id_to_pred, id_to_labels)
46
+
47
+ def _compute_metrics(self, id_to_pred, id_to_labels):
48
+ results = {}
49
+
50
+ id_to_pred_decoded = None
51
+ id_to_labels_decoded = None
52
+ for metric in self._metrics:
53
+ metric_prefix = f"{metric.prefix}/" if metric.prefix else ""
54
+ if metric.requires_decoded:
55
+ if id_to_pred_decoded is None:
56
+ id_to_pred_decoded = self._decode(id_to_pred)
57
+ if id_to_labels_decoded is None:
58
+ id_to_labels_decoded = self._decode(id_to_labels)
59
+
60
+ result = metric(id_to_pred_decoded, id_to_labels_decoded, is_decoded=True)
61
+ else:
62
+ result = metric(id_to_pred, id_to_labels)
63
+
64
+ results.update({f"{metric_prefix}{k}": np.mean(v) if type(v) is list else v for k, v in result.items() if type(v) is not str})
65
+
66
+ results["num_predicted"] = len(id_to_pred)
67
+ results["mean_prediction_length_characters"] = np.mean([len(pred) for pred in id_to_pred_decoded.values()])
68
+
69
+ elem = next(iter(id_to_pred.values()))
70
+ if not ((isinstance(elem, list) and isinstance(elem[0], str)) or isinstance(elem, str)):
71
+ tokenizer = self._kwargs["tokenizer"]
72
+ results["mean_prediction_length_tokens"] = np.mean(
73
+ [np.count_nonzero(np.array(pred) != tokenizer.pad_token_id) for pred in id_to_pred.values()]
74
+ ) # includes BOS/EOS tokens
75
+
76
+ results = {key: round(value, 4) for key, value in results.items()}
77
+ return results
78
+
79
+
80
+ def load_metric(paths: List[str], **kwargs):
81
+ if paths is None or len(paths) == 0:
82
+ return None
83
+ if isinstance(paths, str):
84
+ paths = [paths]
85
+ else:
86
+ paths = [path for path in paths]
87
+
88
+ metric_cls_list = []
89
+
90
+ scrolls_custom_metrics = []
91
+ to_remove = []
92
+ for i, path in enumerate(paths):
93
+ if not os.path.isfile(path):
94
+ scrolls_custom_metrics.append(path)
95
+ to_remove.append(i)
96
+ for i in sorted(to_remove, reverse=True):
97
+ del paths[i]
98
+ if len(scrolls_custom_metrics) > 0:
99
+ scrolls_custom_metrics.insert(0, "") # In order to have an identifying comma in the beginning
100
+ metric_cls_list.append(ScrollsWrapper(",".join(scrolls_custom_metrics), **kwargs))
101
+
102
+ for path in paths:
103
+ path = path.strip()
104
+ if len(path) == 0:
105
+ continue
106
+ if os.path.isfile(path) is False:
107
+ path = os.path.join("src", "metrics", f"{path}.py")
108
+
109
+ module = path[:-3].replace(os.sep, ".")
110
+
111
+ metric_cls = import_main_class(module)
112
+ metric_cls_list.append(metric_cls(**kwargs))
113
+
114
+ return MetricCollection(metric_cls_list, **kwargs)
115
+
116
+
117
+ # Modified from datasets.load
118
+ def import_main_class(module_path):
119
+ """Import a module at module_path and return its main class"""
120
+ module = importlib.import_module(module_path)
121
+
122
+ main_cls_type = Metric
123
+
124
+ # Find the main class in our imported module
125
+ module_main_cls = None
126
+ for name, obj in module.__dict__.items():
127
+ if isinstance(obj, type) and issubclass(obj, main_cls_type):
128
+ if inspect.isabstract(obj):
129
+ continue
130
+ module_main_cls = obj
131
+ break
132
+
133
+ return module_main_cls
134
+
135
+
136
+ class ScrollsWrapper(Metric):
137
+ def __init__(self, comma_separated_metric_names, **kwargs) -> None:
138
+ super().__init__(**kwargs)
139
+ self.prefix = None
140
+
141
+ self._metric = hf_load_metric(download_metric(), comma_separated_metric_names, keep_in_memory=True)
142
+
143
+ self.requires_decoded = True
144
+
145
+ def _compute_metrics(self, id_to_pred, id_to_labels) -> Dict[str, float]:
146
+ return self._metric.compute(**self._metric.convert_from_map_format(id_to_pred, id_to_labels))
147
+
148
+ class HFMetricWrapper(Metric):
149
+ def __init__(self, metric_name, **kwargs) -> None:
150
+ super().__init__(**kwargs)
151
+ self._metric = hf_load_metric(metric_name)
152
+ self.kwargs = HFMetricWrapper.metric_specific_kwargs.get(metric_name, {})
153
+ self.requires_decoded = True
154
+ self.prefix = metric_name
155
+ self.requires_decoded = True
156
+
157
+ def _compute_metrics(self, id_to_pred, id_to_labels) -> Dict[str, float]:
158
+ return self._metric.compute(**self.convert_from_map_format(id_to_pred, id_to_labels), **self.kwargs)
159
+
160
+ def convert_from_map_format(self, id_to_pred, id_to_labels):
161
+ index_to_id = list(id_to_pred.keys())
162
+ predictions = [id_to_pred[id_] for id_ in index_to_id]
163
+ references = [id_to_labels[id_] for id_ in index_to_id]
164
+ return {"predictions": predictions, "references": references}
165
+
166
+ metric_specific_kwargs = {
167
+ 'bertscore': {
168
+ # 'model_type': 'microsoft/deberta-large-mnli' or the larger 'microsoft/deberta-xlarge-mnli'
169
+ 'model_type': 'facebook/bart-large-mnli', # has context window of 1024,
170
+ 'num_layers': 11 # according to: https://docs.google.com/spreadsheets/d/1RKOVpselB98Nnh_EOC4A2BYn8_201tmPODpNWu4w7xI/edit#gid=0
171
+ }
172
+ }
173
+
174
+
175
+ def download_metric():
176
+ # here we load the custom metrics
177
+ scrolls_metric_path = hf_hub_download(repo_id="tau/scrolls", filename="metrics/scrolls.py", repo_type='dataset')
178
+ updated_scrolls_metric_path = (
179
+ os.path.dirname(scrolls_metric_path) + os.path.basename(scrolls_metric_path).replace(".", "_") + ".py"
180
+ )
181
+ shutil.copy(scrolls_metric_path, updated_scrolls_metric_path)
182
+ return updated_scrolls_metric_path
unlimiformer/model.py ADDED
@@ -0,0 +1,1157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from enum import Enum, auto
6
+ from transformers import BartModel, BartForConditionalGeneration, \
7
+ T5Model, T5ForConditionalGeneration, \
8
+ LEDModel, LEDForConditionalGeneration, \
9
+ AutoModelForCausalLM, AutoModelForSeq2SeqLM, \
10
+ MODEL_WITH_LM_HEAD_MAPPING, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
11
+
12
+ from typing import TypeVar, Generic
13
+
14
+ from .index_building import Datastore, DatastoreBatch
15
+
16
+ logger = logging.getLogger('Unlimiformer')
17
+ logger.setLevel(20)
18
+
19
+ ModelType = TypeVar('ModelType')
20
+ class Unlimiformer(Generic[ModelType]):
21
+ def __init__(self, model: ModelType,
22
+ layer_begin=-1, layer_end=None,
23
+ unlimiformer_head_num=None,
24
+ exclude_attention=False,
25
+ model_encoder_max_len=None,
26
+ chunk_overlap=0,
27
+ verbose=False, save_heatmap=False,
28
+ tokenizer=None, unlimiformer_training=False,
29
+ use_datastore=False,
30
+ flat_index=False,
31
+ test_datastore=False, reconstruct_embeddings=False,
32
+ gpu_datastore=False, gpu_index=False,
33
+ index_devices=(0,), datastore_device=0,
34
+ ):
35
+ super().__init__()
36
+ self.model = model
37
+ model.unlimiformer = self
38
+ self.layer_begin = layer_begin
39
+ self.layer_end = layer_end
40
+ self.specific_head = unlimiformer_head_num
41
+ self.exclude_attention = exclude_attention
42
+ self.actual_model_window_size = None
43
+ self.model_encoder_max_len = model_encoder_max_len
44
+ self.chunk_overlap = chunk_overlap
45
+ self.verbose = verbose
46
+ self.save_heatmap = save_heatmap
47
+ self.tokenizer = tokenizer
48
+ self.unlimiformer_training = unlimiformer_training
49
+
50
+ self.use_datastore = use_datastore
51
+ self.flat_index = flat_index
52
+ self.reconstruct_embeddings = reconstruct_embeddings
53
+ self.gpu_datastore = gpu_datastore
54
+ self.gpu_index = gpu_index
55
+ # if torch.cuda.is_available() and gpu_index:
56
+ # self.index_devices = [torch.device(f'cuda:{i}') for i in index_devices]
57
+ # else:
58
+ self.index_devices = [torch.device('cpu')]
59
+ self.datastore_device = torch.device('cpu')
60
+ self.test_datastore = test_datastore # flag for debugging
61
+
62
+ self.device = torch.device('cpu')
63
+ self.activation_capturer = None
64
+ self.is_encoder_decoder = model.config.is_encoder_decoder
65
+ self.hook_handles = []
66
+ self.is_input_encoding_pass = False
67
+ self.is_first_test_decoding_step = False
68
+ self.prev_tokens = None
69
+ self.last_beam_idx = None
70
+ self.heatmap = None
71
+ self.cur_decoder_layer_index = None
72
+ self.datastore = None
73
+
74
+ self.break_into(model)
75
+
76
+ def break_into(self, model):
77
+ self.actual_model_window_size = self.window_size()
78
+ if self.model_encoder_max_len is None:
79
+ self.model_encoder_max_len = self.actual_model_window_size
80
+ self.window_margin = int(self.model_encoder_max_len * self.chunk_overlap / 2)
81
+ self.num_heads = model.config.num_attention_heads
82
+ if self.specific_head is None:
83
+ self.head_nums = Ellipsis # torch.arange(0, self.num_heads, device=self.device)
84
+ else:
85
+ self.head_nums = self.specific_head
86
+ self.hooks_injected = False
87
+ self.training_hooks_injected = False
88
+ self.original_forward_func = model.forward
89
+
90
+ # Activate Unlimiformer when calling model.eval(), deactivate for model.train()
91
+ self.original_model_eval_func = model.eval
92
+ model.eval = self.pre_eval_hook
93
+ self.original_model_train_func = model.train
94
+ model.train = self.pre_train_hook
95
+
96
+ def pre_eval_hook(self):
97
+ self.remove_training_hooks(self.model)
98
+ self.inject_hooks(self.model)
99
+ self.original_model_eval_func()
100
+
101
+ def pre_train_hook(self, mode=True):
102
+ # mode=True means model.train() is called
103
+ # mode=False means model.eval() is called
104
+ torch.cuda.empty_cache()
105
+ if mode is True:
106
+ self.break_out(self.model)
107
+ if self.unlimiformer_training:
108
+ self.inject_training_hooks(self.model)
109
+ self.original_model_train_func(mode)
110
+
111
+ def inject_hooks(self, model):
112
+ if self.hooks_injected:
113
+ return
114
+ # Inject our activation_capturer to capture the activations at every forward pass
115
+ attention_layers_to_capture = self.activation_to_capture(self.layer_begin, self.layer_end)
116
+ self.activation_capturer = []
117
+ for layer in attention_layers_to_capture:
118
+ if type(layer) is list:
119
+ layer_capturers = []
120
+ for k_or_v in layer:
121
+ capturer = ActivationCapturer(k_or_v, capture_input=False)
122
+ layer_capturers.append(capturer)
123
+ self.register_hook(k_or_v, capturer)
124
+ self.activation_capturer.append(layer_capturers)
125
+ else:
126
+ capturer = ActivationCapturer(layer, capture_input=False)
127
+ self.register_hook(layer, capturer)
128
+ self.activation_capturer.append(capturer)
129
+
130
+ # Inject our main function after the main attention function
131
+ attention_layers_to_run = self.attention_op_to_run(self.layer_begin, self.layer_end)
132
+ for layer in attention_layers_to_run:
133
+ self.register_hook(layer, self.attention_forward_hook)
134
+
135
+ decoder_layers_to_run = self.attention_layer_to_run(self.layer_begin, self.layer_end)
136
+ self.original_decoder_layer_cross_attn_forward_funcs = []
137
+ for i, decoder_layer in enumerate(decoder_layers_to_run):
138
+ decoder_layer_cross_attention = self.cross_attention(decoder_layer)
139
+ self.original_decoder_layer_cross_attn_forward_funcs.append(decoder_layer_cross_attention.forward)
140
+ decoder_layer_cross_attention.forward = self.create_cross_attn_pre_forward_hook(decoder_layer_cross_attention.forward, i)
141
+
142
+ # Inject our hook function in the beginning of generation.
143
+ # When the "model.generate()" will be called, it will first call our "reset_generation()" function,
144
+ # and only then call "model.generate()"
145
+ self.original_generate_func = model.generate
146
+ model.generate = self.pre_generate_hook
147
+
148
+ model.forward = self.pre_forward_hook
149
+
150
+ self.original_reorder_cache_func = model._reorder_cache
151
+ model._reorder_cache = self.reorder_cache_hook
152
+ self.hooks_injected = True
153
+
154
+ def inject_training_hooks(self, model):
155
+ if self.training_hooks_injected:
156
+ return
157
+ # self.original_forward_func = model.forward
158
+ model.forward = self.pre_forward_hook
159
+
160
+ decoder_layers_to_run = self.attention_layer_to_run(self.layer_begin, self.layer_end)
161
+
162
+ self.original_decoder_layer_self_attn_forward_funcs = []
163
+ for decoder_layer in decoder_layers_to_run:
164
+ attention = self.self_attention(decoder_layer)
165
+ self.original_decoder_layer_self_attn_forward_funcs.append(attention.forward)
166
+ attention.forward = self.create_self_attn_pre_forward_hook(attention.forward)
167
+
168
+ self.original_decoder_layer_cross_attn_forward_funcs = []
169
+ for i, decoder_layer in enumerate(decoder_layers_to_run):
170
+ decoder_layer_cross_attention = self.cross_attention(decoder_layer)
171
+ self.original_decoder_layer_cross_attn_forward_funcs.append(decoder_layer_cross_attention.forward)
172
+ decoder_layer_cross_attention.forward = self.create_cross_attn_pre_forward_hook(decoder_layer_cross_attention.forward, i)
173
+
174
+ self.original_decoder_layer_forward_funcs = []
175
+ for decoder_layer in decoder_layers_to_run:
176
+ self.original_decoder_layer_forward_funcs.append(decoder_layer.forward)
177
+ decoder_layer.forward = self.create_decoder_layer_func(decoder_layer.forward, decoder_layer)
178
+
179
+ self.inject_hooks_for_unaffected_layers(model, decoder_layers_to_run)
180
+
181
+ attention_layers_to_run = self.attention_op_to_run(self.layer_begin, self.layer_end)
182
+ for layer in attention_layers_to_run:
183
+ self.register_hook(layer, self.train_attention_forward_hook)
184
+
185
+ self.training_hooks_injected = True
186
+
187
+ def inject_hooks_for_unaffected_layers(self, model, decoder_layers_to_run):
188
+ self.original_non_injected_decoder_layer_forward_funcs = []
189
+ non_injected_decoder_layers = [l for l in self.attention_layer_to_run(0, None)
190
+ if l not in decoder_layers_to_run]
191
+ for decoder_layer in non_injected_decoder_layers:
192
+ self.original_non_injected_decoder_layer_forward_funcs.append(decoder_layer.forward)
193
+ decoder_layer.forward = self.create_noninjected_decoder_layer_func(decoder_layer.forward, decoder_layer)
194
+
195
+ def create_self_attn_pre_forward_hook(self, original_self_attn_forward_func):
196
+ def self_attention_pre_forward_hook(*args, **kwargs):
197
+ kwargs['past_key_value'] = None
198
+ return original_self_attn_forward_func(*args, **kwargs)
199
+
200
+ return self_attention_pre_forward_hook
201
+
202
+ def create_decoder_layer_func(self, decoder_layer_original_forward_func, decoder_layer):
203
+ def checkpointed_decoder_layer(
204
+ hidden_states: torch.Tensor,
205
+ attention_mask=None,
206
+ encoder_hidden_states=None,
207
+ encoder_attention_mask=None,
208
+ layer_head_mask=None,
209
+ cross_attn_layer_head_mask=None,
210
+ past_key_value=None,
211
+ output_attentions=False,
212
+ position_bias=None,
213
+ encoder_decoder_position_bias=None,
214
+ use_cache=True):
215
+
216
+
217
+ def forward_with_all_keys(hidden_states, attention_mask,
218
+ encoder_hidden_states, encoder_attention_mask, layer_head_mask,
219
+ cross_attn_layer_head_mask, past_key_value,
220
+ output_attentions, use_cache, long_inputs, long_inputs_mask,
221
+ position_bias, encoder_decoder_position_bias):
222
+
223
+ key, value = self.create_key_value(long_inputs, decoder_layer)
224
+ decoder_layer_args = self.create_decoder_layer_args(
225
+ hidden_states=hidden_states,
226
+ attention_mask=attention_mask,
227
+ encoder_hidden_states=encoder_hidden_states,
228
+ encoder_attention_mask=encoder_attention_mask,
229
+ layer_head_mask=layer_head_mask,
230
+ cross_attn_layer_head_mask=cross_attn_layer_head_mask,
231
+ past_key_value=past_key_value,
232
+ output_attentions=output_attentions,
233
+ position_bias=position_bias,
234
+ encoder_decoder_position_bias=encoder_decoder_position_bias,
235
+ use_cache=use_cache,
236
+ key=key,value=value)
237
+ return decoder_layer_original_forward_func(**decoder_layer_args)
238
+
239
+ return torch.utils.checkpoint.checkpoint(
240
+ forward_with_all_keys, hidden_states, attention_mask,
241
+ encoder_hidden_states, encoder_attention_mask, layer_head_mask,
242
+ cross_attn_layer_head_mask, None,
243
+ output_attentions, use_cache, self.long_inputs_encoded, self.long_inputs_mask,
244
+ position_bias, encoder_decoder_position_bias)
245
+
246
+ return checkpointed_decoder_layer
247
+
248
+ def create_noninjected_decoder_layer_func(self, decoder_layer_original_forward_func, decoder_layer):
249
+ def checkpointed_decoder_layer(
250
+ hidden_states: torch.Tensor,
251
+ attention_mask=None,
252
+ encoder_hidden_states=None,
253
+ encoder_attention_mask=None,
254
+ layer_head_mask=None,
255
+ cross_attn_layer_head_mask=None,
256
+ past_key_value=None,
257
+ output_attentions=False,
258
+ position_bias=None,
259
+ encoder_decoder_position_bias=None,
260
+ use_cache=True):
261
+
262
+
263
+ def forward_with_all_keys(hidden_states, attention_mask,
264
+ encoder_hidden_states, encoder_attention_mask, layer_head_mask,
265
+ cross_attn_layer_head_mask, past_key_value,
266
+ output_attentions, use_cache, long_inputs, long_inputs_mask,
267
+ position_bias, encoder_decoder_position_bias):
268
+
269
+ decoder_layer_args = self.create_decoder_layer_args(
270
+ hidden_states=hidden_states,
271
+ attention_mask=attention_mask,
272
+ encoder_hidden_states=encoder_hidden_states,
273
+ encoder_attention_mask=encoder_attention_mask,
274
+ layer_head_mask=layer_head_mask,
275
+ cross_attn_layer_head_mask=cross_attn_layer_head_mask,
276
+ past_key_value=past_key_value,
277
+ output_attentions=output_attentions,
278
+ position_bias=position_bias,
279
+ encoder_decoder_position_bias=encoder_decoder_position_bias,
280
+ use_cache=use_cache, key=None, value=None)
281
+ return decoder_layer_original_forward_func(**decoder_layer_args)
282
+
283
+ return torch.utils.checkpoint.checkpoint(
284
+ forward_with_all_keys, hidden_states, attention_mask,
285
+ encoder_hidden_states, encoder_attention_mask, layer_head_mask,
286
+ cross_attn_layer_head_mask, None,
287
+ output_attentions, use_cache, self.long_inputs_encoded, self.long_inputs_mask,
288
+ position_bias, encoder_decoder_position_bias)
289
+
290
+ return checkpointed_decoder_layer
291
+
292
+ def register_hook(self, layer, func, pre=False):
293
+ handle = layer.register_forward_pre_hook(func) if pre else layer.register_forward_hook(func)
294
+ self.hook_handles.append(handle)
295
+
296
+ def break_out(self, model):
297
+ self.prompt_keys = []
298
+ self.prompt_values = []
299
+ self.prompt_attention_mask = []
300
+ self.generated_input_ids = []
301
+ torch.cuda.empty_cache()
302
+ if not self.hooks_injected:
303
+ return
304
+
305
+ for h in self.hook_handles:
306
+ h.remove()
307
+ model.generate = self.original_generate_func
308
+ model.forward = self.original_forward_func
309
+ model._reorder_cache = self.original_reorder_cache_func
310
+
311
+ decoder_layers_to_run = self.attention_layer_to_run(self.layer_begin, self.layer_end)
312
+ for decoder_layer, original_func in zip(decoder_layers_to_run, self.original_decoder_layer_cross_attn_forward_funcs):
313
+ self.cross_attention(decoder_layer).forward = original_func
314
+ self.hooks_injected = False
315
+
316
+ def remove_training_hooks(self, model):
317
+ self.long_inputs_encoded, self.long_inputs_mask = None, None
318
+ if not self.training_hooks_injected:
319
+ return
320
+ for h in self.hook_handles:
321
+ h.remove()
322
+ model.forward = self.original_forward_func
323
+
324
+ decoder_layers_to_run = self.attention_layer_to_run(self.layer_begin, self.layer_end)
325
+ for decoder_layer, original_func in zip(decoder_layers_to_run, self.original_decoder_layer_self_attn_forward_funcs):
326
+ self.self_attention(decoder_layer).forward = original_func
327
+ for decoder_layer, original_func in zip(decoder_layers_to_run, self.original_decoder_layer_cross_attn_forward_funcs):
328
+ self.cross_attention(decoder_layer).forward = original_func
329
+ for decoder_layer, original_func in zip(decoder_layers_to_run, self.original_decoder_layer_forward_funcs):
330
+ decoder_layer.forward = original_func
331
+
332
+ non_injected_decoder_layers = [l for l in self.attention_layer_to_run(0, None)
333
+ if l not in decoder_layers_to_run]
334
+ for decoder_layer, original_func in zip(non_injected_decoder_layers, self.original_non_injected_decoder_layer_forward_funcs):
335
+ decoder_layer.forward = original_func
336
+
337
+ self.training_hooks_injected = False
338
+
339
+ def reset_memory(self, input_ids, attention_mask):
340
+ if self.use_datastore:
341
+ if self.is_encoder_decoder:
342
+ self.datastore = [DatastoreBatch(dim=self.model.config.hidden_size, batch_size=input_ids.shape[0], flat_index=self.flat_index,
343
+ gpu_index=self.gpu_index, index_device=self.index_devices[0])]
344
+ self.hidden_states = [[]]
345
+ else:
346
+ self.datastore = [DatastoreBatch(dim=self.model.config.hidden_size, batch_size=input_ids.shape[0], flat_index=self.flat_index,
347
+ gpu_index=self.gpu_index, index_device=self.index_devices[i % len(self.index_devices)])
348
+ for i in range(self.model.config.num_hidden_layers)[self.layer_begin:self.layer_end]]
349
+ self.hidden_states = [[] for _ in range(self.model.config.num_hidden_layers)[self.layer_begin:self.layer_end]]
350
+ torch.cuda.empty_cache()
351
+ self.prompt_input_ids = input_ids
352
+ self.input_ids_size = input_ids.shape[-1]
353
+ self.prompt_keys, self.prompt_values = None, None
354
+ self.prev_tokens = [None for _ in range(len(self.original_decoder_layer_cross_attn_forward_funcs))]
355
+ self.last_beam_idx = None
356
+ self.cur_layer_key_value_placeholder = None
357
+ self.is_input_encoding_pass = True
358
+ if self.is_encoder_decoder:
359
+ dummy_labels = torch.zeros((input_ids.shape[0], 1), dtype=torch.long, device=input_ids.device)
360
+ else:
361
+ dummy_labels = None
362
+ if self.save_heatmap:
363
+ if self.heatmap is not None:
364
+ print(f'Generated: {self.tokenizer.decode(self.generated_input_ids[0])}')
365
+ self.plot_heatmap(self.heatmap[0].detach().cpu().numpy())
366
+ self.heatmap = torch.tensor([], dtype=torch.float, device=input_ids.device)
367
+ self.generated_input_ids = torch.tensor([], dtype=torch.long, device=input_ids.device)
368
+
369
+ self.prompt_keys = [[] for _ in range(self.model.config.num_hidden_layers)[self.layer_begin:self.layer_end]]
370
+ self.prompt_values = [[] for _ in range(self.model.config.num_hidden_layers)[self.layer_begin:self.layer_end]]
371
+ self.prompt_attention_mask = []
372
+ window_indices = self.window_indices(input_ids.shape[-1])
373
+
374
+ for context_start_ind, context_end_ind, update_start_ind, update_end_ind in window_indices:
375
+ logger.info(f'Encoding {context_start_ind} to {context_end_ind} out of {input_ids.shape[-1]}')
376
+ chunk = input_ids[:, context_start_ind:context_end_ind].to(self.device)
377
+ chunk_attention_mask = attention_mask[:, context_start_ind:context_end_ind].to(self.device)
378
+ with torch.inference_mode():
379
+ _ = self.model(chunk, attention_mask=chunk_attention_mask, labels=dummy_labels) # , return_dict=True, output_hidden_states=True)
380
+ if self.use_datastore:
381
+ # TODO: verify with BART as well
382
+ # hidden_states_to_index = [hidden_states.encoder_last_hidden_state] # list of length 1 of (batch, chunked_source_len, dim)
383
+ hidden_states_to_index = [
384
+ layer_capturer.captured for layer_capturer in self.activation_capturer
385
+ ]
386
+ # hidden_states_to_index = list(hidden_states.hidden_states)[:-1][self.layer_begin:self.layer_end]
387
+ to_add = [state[:, update_start_ind:update_end_ind].detach() for state in hidden_states_to_index]
388
+ to_apply_mask = chunk_attention_mask[:, update_start_ind:update_end_ind]
389
+ # to_apply_mask = to_apply_mask.log().to(to_add[0].dtype)
390
+ to_apply_mask = to_apply_mask.to(to_add[0].dtype)
391
+ if not self.reconstruct_embeddings:
392
+ to_add_embeddings = to_add
393
+ if not self.gpu_datastore:
394
+ to_add_embeddings = [states.cpu() for states in to_add_embeddings]
395
+ to_apply_mask = to_apply_mask.cpu()
396
+ for i, layer_states in enumerate(to_add_embeddings):
397
+ layer_states = layer_states * to_apply_mask.unsqueeze(-1)
398
+ self.hidden_states[i].append(layer_states.to(self.datastore_device))
399
+ # list of len layers, inside it there is a list of len batch, each item is (masked_time, dim)
400
+ # for i, to_add_layer in enumerate(to_add):
401
+ # keys = [key[mask.bool()] for key, mask in zip(to_add_layer, to_apply_mask)]
402
+ # self.datastore[i].add_keys(keys)
403
+ if (not self.use_datastore) or self.test_datastore:
404
+ layers_kv = [
405
+ self.process_key_value(layer_capturer) # (batch, head, time, dim)
406
+ for layer_capturer in self.activation_capturer
407
+ ] # list of pairs of (batch, head, time, dim)
408
+
409
+ # list of (batch, head, chunked_time, dim)
410
+ key = [layer[0][:, :, update_start_ind:update_end_ind] for layer in layers_kv]
411
+ value = [layer[1][:, :, update_start_ind:update_end_ind] for layer in layers_kv]
412
+ chunk_attention_mask = chunk_attention_mask[:, update_start_ind:update_end_ind] # (batch, chunked_time)
413
+
414
+ # key = torch.stack(key, dim=0) # (num_layers, batch, head, time, dim)
415
+ # value = torch.stack(value, dim=0) # (num_layers, batch, head, time, dim)
416
+
417
+ for i, (layer_key, layer_value) in enumerate(zip(key, value)):
418
+ self.prompt_keys[i].append(layer_key) # (num_layers, batch, head, chunked_source_len, dim)
419
+ self.prompt_values[i].append(layer_value) # (num_layers, batch, head, chunked_source_len, dim)
420
+ self.prompt_attention_mask.append(chunk_attention_mask) # (batch, chunked_source_len)
421
+
422
+ if self.use_datastore:
423
+ # keys are all in datastore already!
424
+ if not self.reconstruct_embeddings:
425
+ # self.hidden_states = [torch.cat(layer_hidden_states, axis=1) for layer_hidden_states in self.hidden_states]
426
+ concat_hidden_states = []
427
+ for i in range(len(self.hidden_states)):
428
+ concat_hidden_states.append(torch.cat(self.hidden_states[i], axis=1))
429
+ self.hidden_states[i] = None
430
+ self.hidden_states = concat_hidden_states
431
+ for datastore, layer_hidden_states in zip(self.datastore, self.hidden_states):
432
+ datastore.train_index(layer_hidden_states)
433
+ if (not self.use_datastore) or self.test_datastore:
434
+ for i, (layer_keys, layer_values) in enumerate(zip(self.prompt_keys, self.prompt_values)):
435
+ self.prompt_keys[i] = torch.cat(layer_keys, dim=-2)
436
+ self.prompt_values[i] = torch.cat(layer_values, dim=-2)
437
+ # self.prompt_keys = torch.cat(self.prompt_keys, dim=-2) # (num_layers, batch, head, source_len, dim)
438
+ # self.prompt_values = torch.cat(self.prompt_values, dim=-2) # (num_layers, batch, head, source_len, dim)
439
+ self.prompt_attention_mask = torch.cat(self.prompt_attention_mask, dim=-1) # (batch, source_len)
440
+
441
+ self.is_input_encoding_pass = False
442
+ if self.verbose:
443
+ print(f'Input: '
444
+ f'{self.tokenizer.decode(input_ids[0][:self.actual_model_window_size], skip_special_tokens=True)} ||| '
445
+ f'{self.tokenizer.decode(input_ids[0][self.actual_model_window_size:], skip_special_tokens=True)}')
446
+ print()
447
+
448
+ def chunked_encode_input(self, input_ids, attention_mask):
449
+ long_inputs_encoded = []
450
+ long_inputs_mask = []
451
+ window_indices = self.window_indices(input_ids.shape[-1])
452
+
453
+ self.is_input_encoding_pass = True
454
+ for context_start_ind, context_end_ind, update_start_ind, update_end_ind in window_indices:
455
+ chunk = input_ids[:, context_start_ind:context_end_ind]
456
+ chunk_attention_mask = attention_mask[:, context_start_ind:context_end_ind]
457
+ output = self.model.base_model.encoder(chunk, attention_mask=chunk_attention_mask, return_dict=True, output_hidden_states=True)
458
+ encoder_last_hidden_state = output.last_hidden_state # (batch, time, dim)
459
+
460
+ # list of (batch, head, chunked_time, dim)
461
+ encoder_last_hidden_state = encoder_last_hidden_state[:, update_start_ind:update_end_ind] # (batch, chunked_time, dim)
462
+ chunk_attention_mask = chunk_attention_mask[:, update_start_ind:update_end_ind] # (batch, chunked_time)
463
+
464
+ long_inputs_encoded.append(encoder_last_hidden_state) # (batch, chunked_source_len, dim)
465
+ long_inputs_mask.append(chunk_attention_mask) # (batch, chunked_source_len)
466
+
467
+ long_inputs_encoded = torch.cat(long_inputs_encoded, dim=1) # (batch, source_len, dim)
468
+ long_inputs_mask = torch.cat(long_inputs_mask, dim=1) # (batch, source_len)
469
+
470
+ self.is_input_encoding_pass = False
471
+ if self.verbose:
472
+ print(f'Input: '
473
+ f'{self.tokenizer.decode(input_ids[0][:self.actual_model_window_size], skip_special_tokens=True)} ||| '
474
+ f'{self.tokenizer.decode(input_ids[0][self.actual_model_window_size:], skip_special_tokens=True)}')
475
+ print()
476
+ return long_inputs_encoded, long_inputs_mask
477
+
478
+ def window_indices(self, total_seq_len):
479
+ # Copied from SLED (Ivgy et al., 2022)
480
+ # https://github.com/Mivg/SLED/blob/main/sled/modeling_sled.py#L467
481
+ if total_seq_len <= self.model_encoder_max_len:
482
+ return [(0, total_seq_len, 0, total_seq_len)]
483
+ else:
484
+ results = []
485
+ # if self.chunk_overlap == 0:
486
+ # stride = self.model_encoder_max_len
487
+ stride = self.model_encoder_max_len - 2 * self.window_margin
488
+ context_start = update_start_ind = 0
489
+ context_end = self.model_encoder_max_len
490
+ if self.is_encoder_decoder:
491
+ update_end_ind = context_end - self.window_margin
492
+ else:
493
+ update_end_ind = context_end
494
+ # first window always should update from the beginning
495
+ results.append((context_start, context_end, update_start_ind, update_end_ind))
496
+
497
+ while context_end < total_seq_len:
498
+ context_end = min(total_seq_len, context_end + stride)
499
+ context_start = (
500
+ context_start + stride if context_end < total_seq_len else total_seq_len - self.model_encoder_max_len
501
+ )
502
+ update_start_ind = max(update_start_ind + stride, update_end_ind)
503
+ # last window always should update until the end
504
+ update_end_ind = (
505
+ min(total_seq_len, update_end_ind + stride) if context_end < total_seq_len else total_seq_len
506
+ )
507
+
508
+ cs, ce, us, ue = context_start, context_end, update_start_ind - context_start, \
509
+ update_end_ind - context_start
510
+
511
+ results.append((cs, ce, us, ue))
512
+ return results
513
+
514
+ def pre_generate_hook(self, input_ids, **kwargs):
515
+ if 'attention_mask' not in kwargs:
516
+ kwargs['attention_mask'] = torch.ones_like(input_ids)
517
+ self.reset_memory(input_ids, kwargs['attention_mask'])
518
+ new_kwargs = kwargs
519
+ if 'attention_mask' in kwargs:
520
+ new_kwargs = {k: v for k, v in kwargs.items() if k != 'attention_mask'}
521
+ new_kwargs['attention_mask'] = kwargs['attention_mask'][:, :self.actual_model_window_size].to(self.device)
522
+ new_kwargs['use_cache'] = True
523
+ if self.is_encoder_decoder:
524
+ input_ids_prefix = input_ids[:, :self.actual_model_window_size]
525
+ else:
526
+ input_ids_prefix = input_ids[:, -self.actual_model_window_size:]
527
+ input_ids_prefix = input_ids_prefix.to(self.device)
528
+ return self.original_generate_func(input_ids_prefix, **new_kwargs)
529
+
530
+ def pre_forward_hook(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
531
+ self.set_gradient_checkpointing(False)
532
+ if not self.is_input_encoding_pass:
533
+ if self.model.training:
534
+ # self.reset_memory(input_ids, attention_mask)
535
+ self.long_inputs_encoded, self.long_inputs_mask = self.chunked_encode_input(input_ids=input_ids, attention_mask=attention_mask)
536
+ input_ids = input_ids[:, :self.actual_model_window_size]
537
+ attention_mask = attention_mask[:, :self.actual_model_window_size] if attention_mask is not None else None
538
+ # input_ids = input_ids[:, :self.model_encoder_max_len]
539
+ # labels = labels[:, :self.model_encoder_max_len] if labels is not None else None
540
+ else:
541
+ if kwargs.get('past_key_values') is None:
542
+ self.is_first_test_decoding_step = True
543
+
544
+ if input_ids is not None:
545
+ # self.input_ids_size += input_ids.shape[-1]
546
+ self.input_ids_size += 1
547
+ if kwargs.get('decoder_input_ids') is not None:
548
+ self.generated_input_ids = torch.cat([self.generated_input_ids, kwargs['decoder_input_ids']], axis=-1)
549
+
550
+ result = self.original_forward_func(input_ids=input_ids, labels=labels, attention_mask=attention_mask, **kwargs)
551
+ self.is_first_test_decoding_step = False
552
+ return result
553
+
554
+ def create_cross_attn_pre_forward_hook(self, original_cross_attn_forward_func, cur_layer_num):
555
+ def attention_pre_forward_hook(hidden_states, attention_mask=None, *args, **kwargs):
556
+ self.cur_decoder_layer_index = cur_layer_num
557
+ if kwargs.get('past_key_value') is not None:
558
+ # it's a tuple, and we convert it to a list to be able to perform assignment
559
+ # and modify its items from our attention_forward_hook
560
+ self.cur_layer_key_value_placeholder = \
561
+ kwargs['past_key_value'] = list(kwargs['past_key_value']) # (batch, head, time, attn_dim)
562
+
563
+ batch_size, tgt_len, dim = hidden_states.shape
564
+ if self.model.training:
565
+ # from: (batch, tgt_len, dim) to: (batch * tgt_len, 1, dim)
566
+ hidden_states = hidden_states.reshape(-1, 1, hidden_states.shape[-1])
567
+ # from: (batch, 1, tgt_len, dim) to: (batch * tgt_len, 1, 1, dim)
568
+ attention_mask = attention_mask.reshape(-1, 1, 1, attention_mask.shape[-1])
569
+
570
+ attn_output, attn_weights_reshaped, past_key_value = original_cross_attn_forward_func(hidden_states=hidden_states, attention_mask=attention_mask, *args, **kwargs)
571
+ attn_output = attn_output.reshape(batch_size, tgt_len, dim)
572
+ result = (attn_output, attn_weights_reshaped, past_key_value)
573
+ else:
574
+ result = original_cross_attn_forward_func(hidden_states=hidden_states, attention_mask=attention_mask, *args, **kwargs)
575
+ # Uri: this part adds the generated tokens to the prompt.
576
+ # However it was commented out because currently we always keep the generated tokens in the attention window
577
+ # if not self.is_encoder_decoder and not self.is_input_encoding_pass and \
578
+ # past_key_value[0].shape[2] > self.prompt_keys[self.cur_decoder_layer_index].shape[2]:
579
+ # self.prompt_keys[self.cur_decoder_layer_index] = torch.cat([self.prompt_keys[self.cur_decoder_layer_index], past_key_value[0][:,:,-1:]], dim=-2)
580
+ # self.prompt_values[self.cur_decoder_layer_index] = torch.cat([self.prompt_values[self.cur_decoder_layer_index], past_key_value[1][:,:,-1:]], dim=-2)
581
+ # if self.cur_decoder_layer_index == self.model.config.num_hidden_layers - 1:
582
+ # self.prompt_attention_mask = torch.cat([
583
+ # self.prompt_attention_mask,
584
+ # torch.ones([self.prompt_attention_mask.shape[0], 1], dtype=self.prompt_attention_mask.dtype).to(self.device)], dim=-1)
585
+
586
+ return result
587
+ return attention_pre_forward_hook
588
+
589
+
590
+ def attention_forward_hook(self, module, input, output):
591
+ # output: (batch, time, 3 * heads * attention_dim)
592
+ if self.is_input_encoding_pass or self.is_first_test_decoding_step:
593
+ return
594
+ with torch.no_grad():
595
+ prompt_size = self.prompt_input_ids.shape[1]
596
+ generated_size = self.input_ids_size - prompt_size
597
+ window_size = self.cur_layer_key_value_placeholder[0].shape[-2]
598
+ # topk = min(self.actual_model_window_size, attn_weights.shape[-1])
599
+ topk = min(prompt_size, window_size)
600
+ if not self.is_encoder_decoder:
601
+ topk = min(topk, window_size - generated_size + 1)
602
+ if self.gpu_index:
603
+ topk = min(topk, 2048)
604
+
605
+ query = self.process_query(output)[:,-1] # (batch * beam, head, dim)
606
+ query = query[:, self.head_nums] # (batch * beam, head, dim)
607
+
608
+ if self.use_datastore:
609
+ # query: (batch, beam, head, dim)
610
+ # need to multiply by key vector
611
+ # query.view(query.shape[0], query.shape[1] * query.shape[2])
612
+ # k_proj in attention?
613
+ datastore_index = 0 if self.is_encoder_decoder else self.cur_decoder_layer_index
614
+ attention_layer_list = self.get_kv_projections(self.layer_begin, self.layer_end)
615
+ k_proj_layer = [layers[0] for layers in attention_layer_list][self.cur_decoder_layer_index]
616
+ v_proj_layer = [layers[1] for layers in attention_layer_list][self.cur_decoder_layer_index]
617
+
618
+ # modify query by k_projs
619
+ k_proj = k_proj_layer.weight
620
+ datastore_query = self.preprocess_query(query, k_proj) # (batch * beam, num_heads, embed_dim)
621
+ batch_size = self.datastore[datastore_index].batch_size
622
+ datastore_query = datastore_query.view((batch_size, -1, datastore_query.shape[2])) # (batch, beam * num_heads, embed_dim)
623
+ # then search
624
+ if self.reconstruct_embeddings:
625
+ # embeddings: (batch, beam * head, actual_model_window_size, dim)
626
+ _, top_search_key_indices, embeddings = self.datastore[datastore_index].search_and_reconstruct(datastore_query, k=topk)
627
+ else:
628
+ _, top_search_key_indices = self.datastore[datastore_index].search(datastore_query, k=topk)
629
+ # self.embeddings: (batch, src_len, dim)
630
+ # indices: (batch, beam * head, actual_model_window_size)
631
+ # embeddings: (batch, beam * head, actual_model_window_size, dim)
632
+ embeddings = torch.take_along_dim(input=self.hidden_states[datastore_index].unsqueeze(1),
633
+ indices=top_search_key_indices.unsqueeze(-1).to(self.hidden_states[datastore_index].device), dim=-2)
634
+ embeddings = embeddings.to(self.device)
635
+ # (batch, beam, head, actual_model_window_size)
636
+ # top_search_key_scores = top_search_key_scores.reshape(batch_size, -1, *top_search_key_scores.shape[1:])
637
+ top_search_key_indices = top_search_key_indices.reshape(batch_size, -1, *top_search_key_indices.shape[1:])
638
+ # embeddings: (batch, beam, head, actual_model_window_size, dim)
639
+ embeddings = embeddings.reshape(batch_size, -1, self.num_heads, *embeddings.shape[2:])
640
+
641
+ # raw_values are actually token indices; need to look them up
642
+ if (not self.use_datastore) or self.test_datastore:
643
+ this_layer_prompt_keys = self.prompt_keys[self.cur_decoder_layer_index]
644
+ this_layer_prompt_values = self.prompt_values[self.cur_decoder_layer_index]
645
+ # query: (batch * beam, head, dim)
646
+ batch_size = self.prompt_input_ids.shape[0]
647
+ beam_size = query.shape[0] // batch_size
648
+ # query: (batch, beam, head, dim)
649
+ query = query.reshape(batch_size, beam_size, *query.shape[1:])
650
+ # this_layer_prompt_keys: (batch, head, source_len, dim)
651
+ # this_layer_prompt_keys.unsqueeze(1): (batch, 1, head, source_len, dim)
652
+ # query.unsqueeze(-1): (batch, beam, head, dim, 1)
653
+ # attn_weights: (batch, beam, head, source_len)
654
+ attn_weights = torch.matmul(this_layer_prompt_keys.unsqueeze(1)[:, :, self.head_nums], query.unsqueeze(-1)).squeeze(-1)
655
+ # attn_weights = torch.matmul(query.unsqueeze(-2), this_layer_prompt_keys.unsqueeze(1)[:, :, self.head_nums]).squeeze(-2)
656
+ prompt_attention_mask_to_add = (1 - self.prompt_attention_mask) * -1e9 # (batch, source_len)
657
+ prompt_attention_mask_to_add = prompt_attention_mask_to_add.unsqueeze(1).unsqueeze(1)
658
+ attn_weights += prompt_attention_mask_to_add # (batch, beam, head, source_len)
659
+ if self.exclude_attention and attn_weights.shape[-1] > self.actual_model_window_size:
660
+ attn_weights[..., :self.actual_model_window_size] -= 1e9
661
+
662
+ # target_keys, target_values, topk = self.get_target_slices(output)
663
+ top_key_scores, top_key_indices = torch.topk(attn_weights, k=topk, dim=-1, sorted=True) # (batch, beam, head, trunc_source)
664
+ if self.save_heatmap:
665
+ # heatrow: (beam, heads, source_len)
666
+ heatrow = torch.zeros([top_key_indices.shape[1], top_key_indices.shape[2], this_layer_prompt_keys.shape[-2]], dtype=torch.float)
667
+ heatrow = heatrow.scatter(index=top_key_indices[0], src=torch.ones_like(top_key_scores[0]), dim=-1)
668
+ # heatrow = torch.nn.functional.softmax(heatrow, dim=-1)
669
+ # self.heatmap: (beam, heads, targets, source_len)
670
+ self.heatmap = torch.cat([self.heatmap, heatrow.unsqueeze(-2)], axis=-2)
671
+
672
+ if self.test_datastore:
673
+ assert top_key_indices.shape == top_search_key_indices.shape
674
+ assert torch.mean((top_key_indices == top_search_key_indices).float()) > 0.99
675
+
676
+ if self.verbose:
677
+ if self.is_encoder_decoder:
678
+ for i, beam in enumerate(self.generated_input_ids):
679
+ print(f'({i}) Generated: {self.tokenizer.decode(beam)}')
680
+ # else:
681
+ # print(f'Generated: {self.tokenizer.decode(self.input_ids)}')
682
+ print()
683
+
684
+ if self.use_datastore:
685
+ # k_proj_layer.weight, v_proj_layer.weight: (embed_dim, embed_dim)
686
+ # embeddings: (batch, beam, head, encoder_len, embed_dim)
687
+ retrieved_keys, retrieved_values = self.post_process_retrieved(embeddings, k_proj_layer, v_proj_layer, top_search_key_indices)
688
+ else:
689
+ # this_layer_prompt_keys: (batch, head, source_len, dim)
690
+ # top_key_indices: (batch, beam, head, trunc_source)
691
+ retrieved_keys = torch.take_along_dim(this_layer_prompt_keys.unsqueeze(1), indices=top_key_indices.unsqueeze(-1),
692
+ dim=-2) # (batch, head, trunc_source, attn_dim)
693
+ retrieved_values = torch.take_along_dim(this_layer_prompt_values.unsqueeze(1), indices=top_key_indices.unsqueeze(-1),
694
+ dim=-2) # (batch, head, trunc_source, attn_dim)
695
+
696
+ if self.test_datastore:
697
+ correct_keys = torch.take_along_dim(this_layer_prompt_keys.unsqueeze(1), indices=top_key_indices.unsqueeze(-1),
698
+ dim=-2) # (batch, head, trunc_source, attn_dim)
699
+ correct_values = torch.take_along_dim(this_layer_prompt_values.unsqueeze(1), indices=top_key_indices.unsqueeze(-1),
700
+ dim=-2) # (batch, head, trunc_source, attn_dim)
701
+ assert correct_keys.shape == retrieved_keys.shape
702
+ assert correct_values.shape == retrieved_values.shape
703
+ assert torch.mean(torch.isclose(correct_keys, retrieved_keys, rtol=1e-3, atol=1e-3).float()) > 0.99
704
+ assert torch.mean(torch.isclose(correct_values, retrieved_values, rtol=1e-3, atol=1e-3).float()) > 0.99
705
+
706
+ # retrieved_keys, retrieved_values: (batch * beam, head, encoder_len, attn_dim)
707
+ retrieved_keys = retrieved_keys.flatten(0, 1)[:,:,:topk]
708
+ retrieved_values = retrieved_values.flatten(0, 1)[:,:,:topk]
709
+ self.cur_layer_key_value_placeholder[0] = torch.cat([retrieved_keys, self.cur_layer_key_value_placeholder[0][:,:,topk:]], dim=-2)
710
+ self.cur_layer_key_value_placeholder[1] = torch.cat([retrieved_values, self.cur_layer_key_value_placeholder[1][:,:,topk:]], dim=-2)
711
+ return
712
+
713
+ def train_attention_forward_hook(self, module, input, output):
714
+ # output: (batch, time, 3 * heads * attention_dim)
715
+ if self.is_input_encoding_pass or self.is_first_test_decoding_step:
716
+ return
717
+ this_layer_prompt_keys = self.cur_layer_key_value_placeholder[0]
718
+ this_layer_prompt_values = self.cur_layer_key_value_placeholder[1]
719
+ with torch.no_grad():
720
+ query = self.process_query(output) # (batch * beam, tgt_len, head, dim)
721
+ # query = query[:, :, self.head_nums] # (batch * beam, head, dim)
722
+
723
+ # query: (batch * beam, tgt_len, head, dim)
724
+ batch_size = this_layer_prompt_keys.shape[0]
725
+ tgt_len = query.shape[0] // batch_size
726
+ # query: (batch, tgt, head, dim)
727
+ query = query.reshape(batch_size, tgt_len, *query.shape[2:])
728
+ # this_layer_prompt_keys: (batch, head, source_len, dim)
729
+ # this_layer_prompt_keys.unsqueeze(1): (batch, 1, head, source_len, dim)
730
+ # attn_weights: (batch, tgt_len, head, 1, source_len)
731
+ # attn_weights = torch.matmul(query.unsqueeze(-2), this_layer_prompt_keys.unsqueeze(1).permute(0,1,2,4,3))
732
+ attn_weights = torch.matmul(this_layer_prompt_keys.unsqueeze(1), query.unsqueeze(-1)) \
733
+ .reshape(batch_size, tgt_len, query.shape[-2], 1, this_layer_prompt_keys.shape[-2])
734
+ # attn_weights = torch.matmul(query.unsqueeze(-2), this_layer_prompt_keys.unsqueeze(1)[:, :, self.head_nums]).squeeze(-2)
735
+ prompt_attention_mask_to_add = (1 - self.long_inputs_mask) * -1e9 # (batch, source_len)
736
+ prompt_attention_mask_to_add = prompt_attention_mask_to_add.unsqueeze(1).unsqueeze(1).unsqueeze(1)
737
+ attn_weights += prompt_attention_mask_to_add # (batch, beam, head, source_len)
738
+
739
+ # target_keys, target_values, topk = self.get_target_slices(output)
740
+ topk = min(self.actual_model_window_size, attn_weights.shape[-1])
741
+ top_key_scores, top_key_indices = torch.topk(attn_weights, k=min(topk, attn_weights.shape[-1]), dim=-1, sorted=True) # (batch, beam, head, tgt, trunc_source)
742
+
743
+
744
+ # this_layer_prompt_keys: (batch, head, source_len, dim)
745
+ # top_key_indices: (batch, tgt_len, head, 1, trunc_source)
746
+ new_keys = torch.take_along_dim(this_layer_prompt_keys.unsqueeze(2).unsqueeze(1), indices=top_key_indices.unsqueeze(-1),
747
+ dim=-2) # (batch, tgt_len, head, 1, trunc_source, attn_dim)
748
+ new_values = torch.take_along_dim(this_layer_prompt_values.unsqueeze(2).unsqueeze(1), indices=top_key_indices.unsqueeze(-1),
749
+ dim=-2) # (batch, tgt_len, head, 1, trunc_source, attn_dim)
750
+
751
+ # (batch * beam, head, tgt_len, trunc_source, attn_dim)
752
+ self.cur_layer_key_value_placeholder[0] = new_keys.flatten(0, 1).squeeze(2)
753
+ self.cur_layer_key_value_placeholder[1] = new_values.flatten(0, 1).squeeze(2)
754
+ return
755
+
756
+
757
+ def preprocess_query(self, query, k_proj_weight):
758
+ k_proj = k_proj_weight.view(1, self.num_heads, query.shape[-1], k_proj_weight.shape[0]) # (1, num_heads, attn_dim, embed_dim)
759
+ datastore_query = query.unsqueeze(-2) # (batch * beam, num_heads, 1, attn_dim)
760
+ datastore_query = torch.matmul(datastore_query, k_proj) # (batch * beam, num_heads, 1, embed_dim)
761
+ datastore_query = datastore_query.squeeze(-2) # (batch * beam, num_heads, embed_dim)
762
+ return datastore_query
763
+
764
+ def post_process_retrieved(self, embeddings, k_proj_layer, v_proj_layer, top_search_key_indices):
765
+ embed_dim = embeddings.shape[-1]
766
+ k_weight = k_proj_layer.weight.view(1, 1, self.num_heads, embed_dim // self.num_heads, embed_dim).transpose(-2,-1) # (1, 1, heads, embed_dim, attn_dim)
767
+ k_bias = 0
768
+ if k_proj_layer.bias is not None:
769
+ k_bias = k_proj_layer.bias.view(1, self.num_heads, embed_dim // self.num_heads).unsqueeze(-2).unsqueeze(0)
770
+ v_weight = v_proj_layer.weight.view(1, 1, self.num_heads, embed_dim // self.num_heads, embed_dim).transpose(-2,-1) # (1, heads, embed_dim, attn_dim)
771
+ v_bias = 0
772
+ if v_proj_layer.bias is not None:
773
+ v_bias = v_proj_layer.bias.view(1, self.num_heads, embed_dim // self.num_heads).unsqueeze(-2).unsqueeze(0)
774
+ # new_keys, new_values: (batch, beam, head, encoder_len, attn_dim)
775
+ retrieved_keys = torch.matmul(embeddings, k_weight) + k_bias # (beam, head, encoder_len, embed_dim)
776
+ retrieved_values = torch.matmul(embeddings, v_weight) + v_bias # (beam, head, encoder_len, embed_dim)
777
+ return retrieved_keys, retrieved_values
778
+
779
+ def set_gradient_checkpointing(self, value):
780
+ self.model.base_model.decoder.gradient_checkpointing = value
781
+
782
+ def reorder_cache_hook(self, past, beam_idx):
783
+ self.last_beam_idx = beam_idx
784
+ self.generated_input_ids = self.generated_input_ids[beam_idx]
785
+ for i, layer_prev_tokens in enumerate(self.prev_tokens):
786
+ if layer_prev_tokens is not None:
787
+ self.prev_tokens[i] = layer_prev_tokens.flatten(0, 1)[beam_idx].reshape(layer_prev_tokens.shape)
788
+ if self.save_heatmap and self.heatmap.numel() > 0:
789
+ self.heatmap = self.heatmap[beam_idx]
790
+ return self.original_reorder_cache_func(past, beam_idx)
791
+
792
+ @classmethod
793
+ def convert_model(cls, model, *args, **kwargs):
794
+ # if type(model.config) in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING:
795
+ # elif type(model.config) in MODEL_WITH_LM_HEAD_MAPPING:
796
+ # else:
797
+ # raise ValueError(f'Unsupported model type: {type(model.config)}')
798
+ # if model.config.is_encoder_decoder:
799
+ # model_clone = AutoModelForSeq2SeqLM.from_config(model.config)
800
+ # else:
801
+ # model_clone = AutoModelForCausalLM.from_config(model.config)
802
+ # model_clone.load_state_dict(model.state_dict()).to(args.device)
803
+ type_to_class = {
804
+ BartModel: UnlimiformerBART,
805
+ BartForConditionalGeneration: UnlimiformerBART,
806
+ T5Model: UnlimiformerT5,
807
+ T5ForConditionalGeneration: UnlimiformerT5,
808
+ LEDModel: UnlimiformerLED,
809
+ LEDForConditionalGeneration: UnlimiformerLED,
810
+ # LlamaModel: UnlimiformerLLaMa,
811
+ # LlamaForCausalLM: UnlimiformerLLaMa,
812
+ }
813
+ type_to_class[type(model)](model, *args, **kwargs)
814
+ return model
815
+
816
+
817
+ def plot_heatmap(self, data, xticklabels='auto', yticklabels='auto'):
818
+ # data: (heads, targets, source_len)
819
+ import seaborn as sb
820
+ import matplotlib.pyplot as plt
821
+ # print('gat = np.array([')
822
+ # for row in data[0]:
823
+ # rowstr = ', '.join([f'{x:.2f}' for x in row])
824
+ # print(f' [{rowstr}],')
825
+ # print(']')
826
+
827
+ # sb.set(font_scale=1.5, rc={'text.usetex': True})
828
+ for i in range(data.shape[0]):
829
+ fig, axes = plt.subplots(1, 1, figsize=(40, 100))
830
+ cur_ax = axes
831
+ axes.set_title(f'Head #{i}, length: {data.shape[2]}, target length: {data.shape[1]}')
832
+ cur_ax = axes
833
+ # annot = [[x for x in row] for row in data]
834
+ ax = sb.heatmap(data[i], annot=False, fmt='.2f',
835
+ xticklabels=512, yticklabels=yticklabels, ax=cur_ax)
836
+ ax.xaxis.tick_top()
837
+ plt.savefig(f'knns_head{i}.pdf')
838
+ # plt.savefig('gat_s10_contrast.pdf')
839
+ plt.show()
840
+
841
+
842
+ class UnlimiformerBART(Unlimiformer[BartModel]):
843
+ def __init__(self, model: BartModel, *args, **kwargs):
844
+ super().__init__(model, *args, **kwargs)
845
+
846
+ def create_key_value(self, encoder_hidden_states, decoder_layer):
847
+ # (batch, time, hidden_dim)
848
+ attention = decoder_layer.encoder_attn
849
+ # key, value: (batch, heads, time, attn_dim)
850
+ key = attention.k_proj(encoder_hidden_states)
851
+ key = key.view(key.shape[0], -1, attention.num_heads, attention.head_dim).transpose(1, 2).contiguous()
852
+ value = attention.v_proj(encoder_hidden_states)
853
+ value = value.view(value.shape[0], -1, attention.num_heads, attention.head_dim).transpose(1, 2).contiguous()
854
+ # key, value: (batch, heads, time, attn_dim)
855
+ return key, value
856
+
857
+ def process_key_value(self, capturers):
858
+ key_capturer, value_capturer = capturers
859
+ key, value = key_capturer.captured, value_capturer.captured
860
+ # (batch, time, heads, attn_dim)
861
+ attention = self.model.base_model.decoder.layers[-1].encoder_attn
862
+
863
+ # query, key, value: (batch, heads, time, attn_dim)
864
+ # query = query.view(query.shape[0], query.shape[1], attention.num_heads, attention.head_dim).transpose(1, 2).contiguous()
865
+ key = key.view(key.shape[0], -1, attention.num_heads, attention.head_dim).transpose(1, 2).contiguous()
866
+ value = value.view(value.shape[0], -1, attention.num_heads, attention.head_dim).transpose(1, 2).contiguous()
867
+
868
+ return key, value
869
+
870
+ def process_query(self, output):
871
+ # (batch, time, heads, attn_dim)
872
+ attention = self.model.base_model.decoder.layers[-1].encoder_attn
873
+ # query: (batch, heads, time, attn_dim)
874
+ # query = output.view(output.shape[0], output.shape[1], attention.num_heads, attention.head_dim).transpose(1, 2).contiguous()
875
+ query = output.view(output.shape[0], output.shape[1], attention.num_heads, attention.head_dim).contiguous()
876
+ return query
877
+
878
+ def get_kv_projections(self, layer_begin, layer_end):
879
+ return [
880
+ [layer.encoder_attn.k_proj, layer.encoder_attn.v_proj]
881
+ for layer in self.model.base_model.decoder.layers[layer_begin:layer_end]
882
+ ]
883
+
884
+ def activation_to_capture(self, layer_begin, layer_end):
885
+ if self.use_datastore:
886
+ return [self.model.base_model.encoder.layers[-1]]
887
+ else:
888
+ return self.get_kv_projections(layer_begin, layer_end)
889
+
890
+ def attention_op_to_run(self, layer_begin, layer_end):
891
+ return [
892
+ layer.encoder_attn.q_proj
893
+ for layer in self.model.base_model.decoder.layers[layer_begin:layer_end]
894
+ ]
895
+
896
+ def attention_layer_to_run(self, layer_begin, layer_end):
897
+ return self.model.base_model.decoder.layers[layer_begin:layer_end]
898
+
899
+ def self_attention(self, decoder_layer):
900
+ return decoder_layer.self_attn
901
+
902
+ def cross_attention(self, decoder_layer):
903
+ return decoder_layer.encoder_attn
904
+
905
+ def window_size(self):
906
+ return self.model.config.max_position_embeddings
907
+
908
+ def create_decoder_layer_args(self, hidden_states, attention_mask, encoder_hidden_states,
909
+ encoder_attention_mask, layer_head_mask, cross_attn_layer_head_mask,
910
+ past_key_value, output_attentions, position_bias,
911
+ encoder_decoder_position_bias, use_cache, key, value):
912
+ args = {'hidden_states': hidden_states,
913
+ 'attention_mask': attention_mask,
914
+ 'encoder_hidden_states': encoder_hidden_states,
915
+ 'encoder_attention_mask': encoder_attention_mask,
916
+ 'layer_head_mask': layer_head_mask,
917
+ 'cross_attn_layer_head_mask': cross_attn_layer_head_mask,
918
+ 'past_key_value': (None, None, key, value),
919
+ 'output_attentions': output_attentions,
920
+ 'use_cache': use_cache,}
921
+ if key is None and value is None:
922
+ args['past_key_value'] = None
923
+ return args
924
+
925
+ class UnlimiformerT5(Unlimiformer[T5Model]):
926
+ def __init__(self, model: T5Model, *args, **kwargs):
927
+ super().__init__(model, *args, **kwargs)
928
+
929
+ def create_key_value(self, encoder_hidden_states, decoder_layer):
930
+ # (batch, time, hidden_dim)
931
+ attention = decoder_layer.layer[1].EncDecAttention
932
+ # key, value: (batch, heads, time, attn_dim)
933
+ key = attention.k(encoder_hidden_states)
934
+ key = key.view(key.shape[0], -1, attention.n_heads, attention.key_value_proj_dim).transpose(1, 2).contiguous()
935
+ value = attention.v(encoder_hidden_states)
936
+ value = value.view(value.shape[0], -1, attention.n_heads, attention.key_value_proj_dim).transpose(1, 2).contiguous()
937
+
938
+ return key, value
939
+
940
+ def process_key_value(self, capturers):
941
+ key_capturer, value_capturer = capturers
942
+ key, value = key_capturer.captured, value_capturer.captured
943
+ # (batch, time, heads, attn_dim)
944
+ attention = self.model.base_model.decoder.block[-1].layer[1].EncDecAttention
945
+
946
+ # query, key, value: (batch, heads, time, attn_dim)
947
+ # query = query.view(query.shape[0], query.shape[1], attention.num_heads, attention.head_dim).transpose(1, 2).contiguous()
948
+ key = key.view(key.shape[0], -1, attention.n_heads, attention.key_value_proj_dim).transpose(1, 2).contiguous()
949
+ value = value.view(value.shape[0], -1, attention.n_heads, attention.key_value_proj_dim).transpose(1, 2).contiguous()
950
+
951
+ return key, value
952
+
953
+ def process_query(self, output):
954
+ # (batch, time, heads, attn_dim)
955
+ attention = self.model.base_model.decoder.block[-1].layer[1].EncDecAttention
956
+ # query: (batch, heads, time, attn_dim)
957
+ query = output.view(output.shape[0], -1, attention.n_heads, attention.key_value_proj_dim).contiguous()
958
+ return query
959
+
960
+ def get_kv_projections(self, layer_begin, layer_end):
961
+ return [
962
+ [layer.layer[1].EncDecAttention.k, layer.layer[1].EncDecAttention.v]
963
+ for layer in self.model.base_model.decoder.block[layer_begin:layer_end]
964
+ ]
965
+
966
+ def activation_to_capture(self, layer_begin, layer_end):
967
+ if self.use_datastore:
968
+ return [self.model.base_model.encoder.layers[-1]]
969
+ else:
970
+ return self.get_kv_projections(layer_begin, layer_end)
971
+
972
+ def attention_op_to_run(self, layer_begin, layer_end):
973
+ return [
974
+ layer.layer[1].EncDecAttention.q
975
+ for layer in self.model.base_model.decoder.block[layer_begin:layer_end]
976
+ ]
977
+
978
+ def attention_layer_to_run(self, layer_begin, layer_end):
979
+ return self.model.base_model.decoder.block[layer_begin:layer_end]
980
+
981
+ def self_attention(self, decoder_layer):
982
+ return decoder_layer.layer[0]
983
+
984
+ def cross_attention(self, decoder_layer):
985
+ return decoder_layer.layer[1]
986
+
987
+ def window_size(self):
988
+ try:
989
+ size = self.model.config.n_positions
990
+ except AttributeError:
991
+ size = 1024
992
+ return size
993
+
994
+ def create_decoder_layer_args(self, hidden_states, attention_mask, encoder_hidden_states,
995
+ encoder_attention_mask, layer_head_mask, cross_attn_layer_head_mask,
996
+ past_key_value, output_attentions, position_bias,
997
+ encoder_decoder_position_bias, use_cache, key, value):
998
+ args = {'hidden_states': hidden_states,
999
+ 'attention_mask': attention_mask,
1000
+ 'position_bias': position_bias,
1001
+ 'encoder_hidden_states': encoder_hidden_states,
1002
+ 'encoder_attention_mask': encoder_attention_mask,
1003
+ 'encoder_decoder_position_bias': encoder_decoder_position_bias,
1004
+ 'layer_head_mask': layer_head_mask,
1005
+ 'cross_attn_layer_head_mask': cross_attn_layer_head_mask,
1006
+ 'past_key_value': (None, None, key, value),
1007
+ 'use_cache': use_cache,
1008
+ 'output_attentions': output_attentions}
1009
+ if key is None and value is None:
1010
+ args['past_key_value'] = None
1011
+ return args
1012
+
1013
+ class UnlimiformerLED(UnlimiformerBART):
1014
+ def __init__(self, model: LEDModel, *args, **kwargs):
1015
+ super().__init__(model, *args, **kwargs)
1016
+
1017
+ def window_size(self):
1018
+ return self.model.config.max_encoder_position_embeddings
1019
+
1020
+ # class UnlimiformerLLaMa(Unlimiformer[LlamaModel]):
1021
+ # def __init__(self, model: LlamaModel, *args, **kwargs):
1022
+ # super().__init__(model, *args, **kwargs)
1023
+
1024
+ # def get_kv_projections(self, layer_begin, layer_end):
1025
+ # return [
1026
+ # [layer.self_attn.k_proj, layer.self_attn.v_proj]
1027
+ # for layer in self.model.base_model.layers[layer_begin:layer_end]
1028
+ # ]
1029
+
1030
+ # def activation_to_capture(self, layer_begin, layer_end):
1031
+ # if self.use_datastore:
1032
+ # return [
1033
+ # layer.input_layernorm
1034
+ # for layer in self.model.base_model.layers[layer_begin:layer_end]
1035
+ # ]
1036
+ # else:
1037
+ # return self.get_kv_projections(layer_begin, layer_end)
1038
+
1039
+ # def attention_op_to_run(self, layer_begin, layer_end):
1040
+ # return [
1041
+ # layer.self_attn.q_proj
1042
+ # for layer in self.model.base_model.layers[layer_begin:layer_end]
1043
+ # ]
1044
+
1045
+ # def attention_layer_to_run(self, layer_begin, layer_end):
1046
+ # return self.model.base_model.layers[layer_begin:layer_end]
1047
+
1048
+ # def self_attention(self, decoder_layer):
1049
+ # return decoder_layer.self_attn
1050
+
1051
+ # def cross_attention(self, decoder_layer):
1052
+ # return decoder_layer.self_attn
1053
+
1054
+ # def window_size(self):
1055
+ # return self.model.config.max_position_embeddings
1056
+
1057
+ # def set_gradient_checkpointing(self, value):
1058
+ # self.model.base_model.gradient_checkpointing = value
1059
+
1060
+ # def process_key_value(self, capturers):
1061
+ # key_capturer, value_capturer = capturers
1062
+ # # (batch, time, heads * attn_dim)
1063
+ # key, value = key_capturer.captured, value_capturer.captured
1064
+ # attention = self.model.base_model.layers[-1].self_attn
1065
+
1066
+ # # (batch, heads, time, attn_dim)
1067
+ # key = key.view(key.shape[0], -1, attention.num_heads, attention.head_dim).transpose(1, 2).contiguous()
1068
+ # value = value.view(value.shape[0], -1, attention.num_heads, attention.head_dim).transpose(1, 2).contiguous()
1069
+
1070
+ # return key, value
1071
+
1072
+ # def process_query(self, output):
1073
+ # # output: (batch, time, heads * attn_dim)
1074
+ # attention = self.model.base_model.layers[-1].self_attn
1075
+
1076
+ # # query: (batch, time, heads, attn_dim)
1077
+ # query = output.view(output.shape[0], output.shape[1], attention.num_heads, attention.head_dim).contiguous()
1078
+ # return query
1079
+
1080
+ # def rotate_half(self, x):
1081
+ # """Rotates half the hidden dims of the input."""
1082
+ # x1 = x[..., : x.shape[-1] // 2]
1083
+ # x2 = x[..., x.shape[-1] // 2 :]
1084
+ # return torch.cat((-x2, x1), dim=-1)
1085
+
1086
+ # def preprocess_query(self, query, k_proj_weight):
1087
+ # # query: (batch * time, head, dim)
1088
+ # attention = self.model.base_model.layers[-1].self_attn
1089
+ # num_generated = min(self.input_ids_size - self.prompt_input_ids.shape[1], self.actual_model_window_size)
1090
+ # cos, sin = attention.rotary_emb(query, seq_len=num_generated)
1091
+ # cos = cos[:,:,-1] # [1, 1, dim]
1092
+ # sin = sin[:,:,-1] # [1, 1, dim]
1093
+ # # cos = cos[-1].unsqueeze(0).unsqueeze(0) # [bs, 1, seq_len, dim]
1094
+ # # sin = sin[-1].unsqueeze(0) # [bs, 1, seq_len, dim]
1095
+ # query = (query * cos) + (self.rotate_half(query) * sin)
1096
+
1097
+ # k_proj = k_proj_weight.view(1, self.num_heads, query.shape[-1], k_proj_weight.shape[0]) # (1, num_heads, attn_dim, embed_dim)
1098
+ # k_proj_l = k_proj[..., :k_proj.shape[-2] // 2, :]
1099
+ # k_proj_r = k_proj[..., k_proj.shape[-2] // 2:, :]
1100
+ # k_proj_rotated = torch.cat([-k_proj_l, k_proj_r], dim=-2)
1101
+
1102
+ # datastore_query = query.unsqueeze(-2) # (batch * beam, num_heads, 1, attn_dim)
1103
+ # datastore_query = torch.matmul(datastore_query, k_proj + k_proj_rotated) # (batch * beam, num_heads, 1, embed_dim)
1104
+ # datastore_query = datastore_query.squeeze(-2) # (batch * beam, num_heads, embed_dim)
1105
+ # return datastore_query
1106
+
1107
+ # def post_process_retrieved(self, embeddings, k_proj_layer, v_proj_layer, top_search_key_indices):
1108
+ # embed_dim = embeddings.shape[-1]
1109
+ # k_weight = k_proj_layer.weight.view(1, 1, self.num_heads, embed_dim // self.num_heads, embed_dim).transpose(-2,-1) # (1, 1, heads, embed_dim, attn_dim)
1110
+ # k_bias = 0
1111
+ # if k_proj_layer.bias is not None:
1112
+ # k_bias = k_proj_layer.bias.view(1, self.num_heads, embed_dim // self.num_heads).unsqueeze(-2).unsqueeze(0)
1113
+ # v_weight = v_proj_layer.weight.view(1, 1, self.num_heads, embed_dim // self.num_heads, embed_dim).transpose(-2,-1) # (1, heads, embed_dim, attn_dim)
1114
+ # v_bias = 0
1115
+ # if v_proj_layer.bias is not None:
1116
+ # v_bias = v_proj_layer.bias.view(1, self.num_heads, embed_dim // self.num_heads).unsqueeze(-2).unsqueeze(0)
1117
+ # # new_keys, new_values: (batch, beam, head, encoder_len, attn_dim)
1118
+ # retrieved_keys = torch.matmul(embeddings, k_weight) + k_bias # (beam, head, encoder_len, embed_dim)
1119
+ # retrieved_values = torch.matmul(embeddings, v_weight) + v_bias # (beam, head, encoder_len, embed_dim)
1120
+
1121
+ # attention = self.model.base_model.layers[-1].self_attn
1122
+ # cos, sin = attention.rotary_emb(retrieved_values, seq_len=self.hidden_states[0].shape[1])
1123
+ # cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
1124
+ # sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
1125
+ # if self.prompt_input_ids.shape[1] > self.actual_model_window_size:
1126
+ # # scale the top key indices to the actual model window size, such that the model will not see
1127
+ # # positional embeddings that did not appear at training time
1128
+ # scaled_key_indices = ((top_search_key_indices / self.prompt_input_ids.shape[1]) * self.actual_model_window_size).int()
1129
+ # else:
1130
+ # scaled_key_indices = top_search_key_indices
1131
+ # # top_search_key_indices = top_search_key_indices.to(cos.device)
1132
+ # scaled_key_indices = scaled_key_indices.to(cos.device)
1133
+ # cos = cos[scaled_key_indices] # [bs, 1, seq_len, dim]
1134
+ # sin = sin[scaled_key_indices] # [bs, 1, seq_len, dim]
1135
+ # retrieved_keys = (retrieved_keys * cos) + (self.rotate_half(retrieved_keys) * sin)
1136
+ # return retrieved_keys, retrieved_values
1137
+
1138
+
1139
+ class ActivationCapturer(nn.Module):
1140
+ def __init__(self, layer, capture_input=False):
1141
+ super().__init__()
1142
+ self.layer = layer
1143
+ self.capture_input = capture_input
1144
+
1145
+ self.captured = None
1146
+
1147
+ def unwrap_tuple(self, t):
1148
+ if isinstance(t, tuple) and len(t) == 1:
1149
+ t = t[0]
1150
+ return t
1151
+
1152
+ def forward(self, module, layer_input, layer_output):
1153
+ if self.capture_input:
1154
+ self.captured = self.unwrap_tuple(layer_input)
1155
+ else:
1156
+ self.captured = self.unwrap_tuple(layer_output)
1157
+
unlimiformer/random_training_unlimiformer.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import contextlib
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from enum import Enum, auto
6
+ from .model import Unlimiformer, ModelType, UnlimiformerBART, UnlimiformerT5, UnlimiformerLED
7
+ from transformers import BartModel, BartForConditionalGeneration, \
8
+ T5Model, T5ForConditionalGeneration, \
9
+ LEDModel, LEDForConditionalGeneration, \
10
+ AutoModelForSeq2SeqLM
11
+
12
+ class RandomTrainingUnlimiformer(Unlimiformer[ModelType]):
13
+ def __init__(self, model: ModelType, *args, **kwargs):
14
+ super().__init__(model, *args, **kwargs)
15
+ self.training_hooks_injected = False
16
+ self.train_step = 0
17
+
18
+ @classmethod
19
+ def convert_model(cls, model, *args, **kwargs):
20
+ # model_clone = AutoModelForSeq2SeqLM.from_config(model.config)
21
+ # model_clone.load_state_dict(model.state_dict()).to(args.device)
22
+ type_to_class = {
23
+ BartModel: RandomUnlimiformerBART,
24
+ BartForConditionalGeneration: RandomUnlimiformerBART,
25
+ T5Model: RandomUnlimiformerT5,
26
+ T5ForConditionalGeneration: RandomUnlimiformerT5,
27
+ LEDModel: RandomUnlimiformerLED,
28
+ LEDForConditionalGeneration: RandomUnlimiformerLED,
29
+ }
30
+ type_to_class[type(model)](model, *args, **kwargs)
31
+ return model
32
+
33
+ def pre_eval_hook(self):
34
+ self.remove_training_hooks(self.model)
35
+ self.inject_hooks(self.model)
36
+ self.original_model_eval_func()
37
+
38
+ def pre_train_hook(self, mode=True):
39
+ # mode=True means model.train() is called
40
+ # mode=False means model.eval() is called
41
+ torch.cuda.empty_cache()
42
+ if mode is True:
43
+ self.break_out(self.model)
44
+ self.remove_training_hooks(self.model)
45
+ if self.unlimiformer_training and self.train_step % 2 == 0:
46
+ super().inject_training_hooks(self.model)
47
+ else:
48
+ self.inject_training_hooks(self.model)
49
+ self.train_step += 1
50
+ self.original_model_train_func(mode)
51
+
52
+ def inject_training_hooks(self, model):
53
+ if self.training_hooks_injected:
54
+ return
55
+ # self.original_forward_func = model.forward
56
+ model.forward = self.random_inputs_forward_hook
57
+
58
+ decoder_layers_to_run = self.attention_layer_to_run(self.layer_begin, self.layer_end)
59
+
60
+ self.original_decoder_layer_self_attn_forward_funcs = []
61
+ for decoder_layer in decoder_layers_to_run:
62
+ attention = self.self_attention(decoder_layer)
63
+ self.original_decoder_layer_self_attn_forward_funcs.append(attention.forward)
64
+ attention.forward = self.create_self_attn_random_pre_forward_hook(attention.forward)
65
+
66
+ self.original_decoder_layer_forward_funcs = []
67
+ for decoder_layer in decoder_layers_to_run:
68
+ self.original_decoder_layer_forward_funcs.append(decoder_layer.forward)
69
+ decoder_layer.forward = self.create_decoder_layer_random_func(decoder_layer.forward, decoder_layer)
70
+
71
+ self.original_decoder_layer_cross_attn_forward_funcs = []
72
+ for i, decoder_layer in enumerate(decoder_layers_to_run):
73
+ attention = self.cross_attention(decoder_layer)
74
+ self.original_decoder_layer_cross_attn_forward_funcs.append(attention.forward)
75
+
76
+ self.inject_hooks_for_unaffected_layers(model, decoder_layers_to_run)
77
+
78
+ self.training_hooks_injected = True
79
+
80
+ def create_self_attn_random_pre_forward_hook(self, original_self_attn_forward_func):
81
+ def self_attention_pre_forward_hook(*args, **kwargs):
82
+ kwargs['past_key_value'] = None
83
+ return original_self_attn_forward_func(*args, **kwargs)
84
+
85
+ return self_attention_pre_forward_hook
86
+
87
+ def create_decoder_layer_random_func(self, decoder_layer_original_forward_func, decoder_layer):
88
+ def checkpointed_decoder_layer(
89
+ hidden_states: torch.Tensor,
90
+ attention_mask=None,
91
+ encoder_hidden_states=None,
92
+ encoder_attention_mask=None,
93
+ layer_head_mask=None,
94
+ cross_attn_layer_head_mask=None,
95
+ past_key_value=None,
96
+ output_attentions=False,
97
+ position_bias=None,
98
+ encoder_decoder_position_bias=None,
99
+ use_cache=True):
100
+
101
+
102
+
103
+ def sample_and_forward(hidden_states, attention_mask,
104
+ encoder_hidden_states, encoder_attention_mask, layer_head_mask,
105
+ cross_attn_layer_head_mask, past_key_value,
106
+ output_attentions, use_cache, long_inputs, long_inputs_mask, rand_indices,
107
+ position_bias, encoder_decoder_position_bias):
108
+
109
+ sampled_input, _ = self.sample_long_input(long_inputs, long_inputs_mask, rand_indices)
110
+ key, value = self.create_key_value(sampled_input, decoder_layer)
111
+ decoder_layer_args = self.create_decoder_layer_args(
112
+ hidden_states=hidden_states,
113
+ attention_mask=attention_mask,
114
+ encoder_hidden_states=encoder_hidden_states,
115
+ encoder_attention_mask=encoder_attention_mask,
116
+ layer_head_mask=layer_head_mask,
117
+ cross_attn_layer_head_mask=cross_attn_layer_head_mask,
118
+ past_key_value=past_key_value,
119
+ output_attentions=output_attentions,
120
+ position_bias=position_bias,
121
+ encoder_decoder_position_bias=encoder_decoder_position_bias,
122
+ use_cache=use_cache,
123
+ key=key,value=value
124
+ )
125
+ return decoder_layer_original_forward_func(**decoder_layer_args)
126
+
127
+
128
+ with torch.no_grad():
129
+ # This sampling must be done outside of the checkpoint, to ensure that the same sampling happens
130
+ # both in "forward" and "backward" passes
131
+ rand_indices = self.sample_random_indices()
132
+
133
+ return torch.utils.checkpoint.checkpoint(
134
+ sample_and_forward, hidden_states, attention_mask,
135
+ encoder_hidden_states, encoder_attention_mask, layer_head_mask,
136
+ cross_attn_layer_head_mask, None,
137
+ output_attentions, use_cache, self.long_inputs_encoded, self.long_inputs_mask, rand_indices,
138
+ position_bias, encoder_decoder_position_bias)
139
+
140
+ return checkpointed_decoder_layer
141
+
142
+ def sample_random_indices(self):
143
+ rand_indices_list = []
144
+ seq_lens = self.long_inputs_mask.sum(-1).tolist()
145
+ for seq_len in seq_lens:
146
+ if seq_len < self.actual_model_window_size:
147
+ rand_indices = torch.arange(self.actual_model_window_size).to(self.device)
148
+ rand_indices_list.append(rand_indices)
149
+ continue
150
+
151
+ rand_indices = torch.torch.randperm(seq_len)[:self.actual_model_window_size].to(self.device)
152
+ if seq_len < self.actual_model_window_size:
153
+ padding = max(self.actual_model_window_size - seq_len, 0)
154
+ rand_indices = torch.cat([rand_indices, torch.arange(padding).to(self.device) + seq_len], axis=-1).to(self.device)
155
+ rand_indices_list.append(rand_indices)
156
+ rand_indices = torch.stack(rand_indices_list, dim=0)
157
+ return rand_indices
158
+
159
+ def random_inputs_forward_hook(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
160
+ self.model.base_model.decoder.gradient_checkpointing = False
161
+ self.long_inputs_encoded, self.long_inputs_mask = self.chunked_encode_input(input_ids=input_ids, attention_mask=attention_mask)
162
+
163
+ # TODO: should the inputs be sampled or the truncated beginning?
164
+ # if self.random_knn_initial_inputs:
165
+ # encoded_inputs, encoded_inputs_mask = self.sample_long_input(self.long_inputs_encoded, self.long_inputs_mask)
166
+ # else:
167
+ encoded_inputs = self.long_inputs_encoded[:, :self.actual_model_window_size]
168
+ encoded_inputs_mask = self.long_inputs_mask[:, :self.actual_model_window_size]
169
+ return self.original_forward_func(encoder_outputs=(encoded_inputs, ), labels=labels, attention_mask=encoded_inputs_mask, **kwargs)
170
+
171
+ def sample_long_input(self, long_inputs_encoded, long_inputs_mask, random_indices=None):
172
+ if long_inputs_mask.shape[-1] < self.actual_model_window_size:
173
+ return long_inputs_encoded, long_inputs_mask
174
+ batch_size = long_inputs_encoded.shape[0]
175
+
176
+ if random_indices is None:
177
+ random_indices = self.sample_random_indices()
178
+ random_mask = torch.zeros_like(long_inputs_mask).to(self.device) \
179
+ .scatter_(dim=-1, index=random_indices, src=torch.ones_like(random_indices)).bool().to(self.device)
180
+ sampled_input = long_inputs_encoded[random_mask].reshape(batch_size, self.actual_model_window_size, -1).to(self.device)
181
+ sampled_mask = long_inputs_mask[random_mask].reshape(batch_size, self.actual_model_window_size).to(self.device)
182
+ return sampled_input, sampled_mask
183
+
184
+ def chunked_encode_input(self, input_ids, attention_mask):
185
+ long_inputs_encoded = []
186
+ long_inputs_mask = []
187
+ window_indices = self.window_indices(input_ids.shape[-1])
188
+
189
+ self.is_input_encoding_pass = True
190
+ for context_start_ind, context_end_ind, update_start_ind, update_end_ind in window_indices:
191
+ chunk = input_ids[:, context_start_ind:context_end_ind]
192
+ chunk_attention_mask = attention_mask[:, context_start_ind:context_end_ind]
193
+ output = self.model.base_model.encoder(chunk, attention_mask=chunk_attention_mask, return_dict=True, output_hidden_states=True)
194
+ encoder_last_hidden_state = output.last_hidden_state # (batch, time, dim)
195
+
196
+ # list of (batch, head, chunked_time, dim)
197
+ encoder_last_hidden_state = encoder_last_hidden_state[:, update_start_ind:update_end_ind] # (batch, chunked_time, dim)
198
+ chunk_attention_mask = chunk_attention_mask[:, update_start_ind:update_end_ind] # (batch, chunked_time)
199
+
200
+ long_inputs_encoded.append(encoder_last_hidden_state) # (batch, chunked_source_len, dim)
201
+ long_inputs_mask.append(chunk_attention_mask) # (batch, chunked_source_len)
202
+
203
+ long_inputs_encoded = torch.cat(long_inputs_encoded, dim=1) # (batch, source_len, dim)
204
+ long_inputs_mask = torch.cat(long_inputs_mask, dim=1) # (batch, source_len)
205
+
206
+ self.is_input_encoding_pass = False
207
+ if self.verbose:
208
+ print(f'Input: '
209
+ f'{self.tokenizer.decode(input_ids[0][:self.actual_model_window_size], skip_special_tokens=True)} ||| '
210
+ f'{self.tokenizer.decode(input_ids[0][self.actual_model_window_size:], skip_special_tokens=True)}')
211
+ print()
212
+ return long_inputs_encoded, long_inputs_mask
213
+
214
+ class RandomUnlimiformerBART(RandomTrainingUnlimiformer[BartModel], UnlimiformerBART):
215
+ def __init__(self, model: BartModel, *args, **kwargs):
216
+ super().__init__(model, *args, **kwargs)
217
+
218
+ class RandomUnlimiformerT5(RandomTrainingUnlimiformer[T5Model], UnlimiformerT5):
219
+ def __init__(self, model: T5Model, *args, **kwargs):
220
+ super().__init__(model, *args, **kwargs)
221
+
222
+ class RandomUnlimiformerLED(RandomTrainingUnlimiformer[LEDModel], UnlimiformerLED):
223
+ def __init__(self, model: LEDModel, *args, **kwargs):
224
+ super().__init__(model, *args, **kwargs)
unlimiformer/run.py ADDED
@@ -0,0 +1,1180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for sequence to sequence.
18
+ """
19
+ # You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
20
+ import logging
21
+ import os
22
+ import sys
23
+
24
+ import numpy as np
25
+ from unlimiformer import Unlimiformer
26
+ from random_training_unlimiformer import RandomTrainingUnlimiformer
27
+
28
+ import nltk
29
+
30
+ # we import the logging frameworks before any other import to make sure all monkey patching for the logging are active
31
+ # from sled import SledConfig
32
+
33
+ import wandb
34
+ import torch
35
+
36
+ sys.path.insert(0, os.path.dirname(__file__)) # seq2seq package path
37
+ sys.path.insert(0, os.getcwd())
38
+
39
+ from dataclasses import dataclass, field, replace
40
+ from typing import List, Optional
41
+ import json
42
+ from copy import deepcopy
43
+ import torch.nn.functional as F
44
+
45
+ import datasets
46
+
47
+ import transformers
48
+ from transformers import (
49
+ AutoConfig,
50
+ AutoModelForSeq2SeqLM,
51
+ AutoTokenizer,
52
+ EarlyStoppingCallback,
53
+ set_seed, WEIGHTS_NAME,
54
+ )
55
+ from transformers.trainer_utils import get_last_checkpoint
56
+ from transformers import DataCollatorForSeq2Seq
57
+
58
+ from datasets import load_dataset
59
+
60
+ # noinspection PyUnresolvedReferences
61
+ # import sled # *** required so that SledModels will be registered for the AutoClasses ***
62
+
63
+ from utils.config import handle_args_to_ignore
64
+ from utils.decoding import decode
65
+ from metrics import load_metric
66
+ from utils.duplicates import drop_duplicates_in_input
67
+ from utils.override_training_args import TrainingOverridesArguments
68
+ from utils.custom_seq2seq_trainer import CustomTrainer
69
+ from utils.custom_hf_argument_parser import CustomHfArgumentParser
70
+ from metrics.metrics import HFMetricWrapper, MetricCollection
71
+
72
+ logger = logging.getLogger('sled')
73
+
74
+ PREFIX_DOC_SEP = '\n\n'
75
+
76
+ DEBUG = os.environ.get('DEBUG', 'false').lower() in {'1', 'true', 'yes'} # If set, will set some configuration to help debug
77
+ if DEBUG:
78
+ assert not torch.cuda.is_available() or torch.cuda.device_count() == 1
79
+
80
+
81
+ @dataclass
82
+ class ModelArguments:
83
+ """
84
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
85
+ """
86
+
87
+ model_name_or_path: str = field(
88
+ default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
89
+ )
90
+ config_name: Optional[str] = field(
91
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
92
+ )
93
+ tokenizer_name: Optional[str] = field(
94
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
95
+ )
96
+ cache_dir: Optional[str] = field(
97
+ default=None,
98
+ metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
99
+ )
100
+ use_fast_tokenizer: bool = field(
101
+ default=True,
102
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
103
+ )
104
+ model_revision: str = field(
105
+ default="main",
106
+ metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
107
+ )
108
+ drop_duplicates_in_eval: bool = field(
109
+ default=True,
110
+ )
111
+
112
+ def __post_init__(self):
113
+ pass
114
+
115
+
116
+
117
+ @dataclass
118
+ class DataTrainingArguments:
119
+ """
120
+ Arguments pertaining to what data we are going to input our model for training and eval.
121
+ """
122
+
123
+ dataset_name: Optional[str] = field(
124
+ default=None,
125
+ metadata={
126
+ "help": "The name of the dataset to use (via the datasets library) or name of the file in src/data."
127
+ },
128
+ )
129
+ dataset_config_name: Optional[str] = field(
130
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
131
+ )
132
+ metric_names: Optional[List[str]] = field(
133
+ default=None,
134
+ metadata={"help": "The name of the metric to use (from src/metrics)."},
135
+ )
136
+ input_column: Optional[str] = field(
137
+ default=None,
138
+ metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
139
+ )
140
+ input_prefix_column: Optional[str] = field(
141
+ default=None,
142
+ metadata={"help": "The name of the column in the datasets containing the input prefix (e.g. questions), when those exist."},
143
+ )
144
+ output_column: Optional[str] = field(
145
+ default=None,
146
+ metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
147
+ )
148
+ train_file: Optional[str] = field(
149
+ default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
150
+ )
151
+ validation_file: Optional[str] = field(
152
+ default=None,
153
+ metadata={
154
+ "help": "An optional input evaluation data file to evaluate the metrics (rouge) on "
155
+ "(a jsonlines or csv file)."
156
+ },
157
+ )
158
+ test_file: Optional[str] = field(
159
+ default=None,
160
+ metadata={
161
+ "help": "An optional input test data file to evaluate the metrics (rouge) on " "(a jsonlines or csv file)."
162
+ },
163
+ )
164
+ overwrite_cache: bool = field(
165
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
166
+ )
167
+ preprocessing_num_workers: Optional[int] = field(
168
+ default=None,
169
+ metadata={"help": "The number of processes to use for the preprocessing."},
170
+ )
171
+ max_source_length: Optional[int] = field(
172
+ default=None,
173
+ metadata={
174
+ "help": "The maximum total input sequence length after tokenization. Sequences longer "
175
+ "than this will be truncated, sequences shorter will be padded."
176
+ },
177
+ )
178
+ eval_max_source_length: Optional[int] = field(
179
+ default=None,
180
+ metadata={"help": "if None, will be same as max_source_length"},
181
+ )
182
+ max_prefix_length: Optional[int] = field(
183
+ default=0,
184
+ metadata={
185
+ "help": "The maximum total input_prefix sequence length after tokenization. Sequences longer "
186
+ "than this will be truncated, sequences shorter will be padded from the left "
187
+ "(only used if prefixes are not merged)."
188
+ },
189
+ )
190
+ max_target_length: Optional[int] = field(
191
+ default=128,
192
+ metadata={
193
+ "help": "The maximum total sequence length for target text after tokenization. Sequences longer "
194
+ "than this will be truncated, sequences shorter will be padded."
195
+ },
196
+ )
197
+ val_max_target_length: Optional[int] = field(
198
+ default=None,
199
+ metadata={
200
+ "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
201
+ "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
202
+ "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
203
+ "during ``evaluate`` and ``predict``."
204
+ },
205
+ )
206
+ pad_to_max_length: bool = field(
207
+ default=False,
208
+ metadata={
209
+ "help": "Whether to pad all samples to model maximum sentence length. "
210
+ "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
211
+ "efficient on GPU but very bad for TPU."
212
+ },
213
+ )
214
+ max_train_samples: Optional[int] = field(
215
+ default=None,
216
+ metadata={
217
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
218
+ "value if set."
219
+ },
220
+ )
221
+ max_eval_samples: Optional[int] = field(
222
+ default=None,
223
+ metadata={
224
+ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
225
+ "value if set."
226
+ },
227
+ )
228
+ max_predict_samples: Optional[int] = field(
229
+ default=None,
230
+ metadata={
231
+ "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
232
+ "value if set."
233
+ },
234
+ )
235
+ num_beams: Optional[int] = field(
236
+ default=None,
237
+ metadata={
238
+ "help": "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
239
+ "which is used during ``evaluate`` and ``predict``."
240
+ },
241
+ )
242
+ ignore_pad_token_for_loss: bool = field(
243
+ default=True,
244
+ metadata={
245
+ "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
246
+ },
247
+ )
248
+ source_prefix: Optional[str] = field(
249
+ default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
250
+ )
251
+ data_dir: Optional[str] = field(
252
+ default=None,
253
+ metadata={"help": "Defining the data_dir of the dataset configuration."},
254
+ )
255
+ download_mode: Optional[str] = field(
256
+ default=None,
257
+ metadata={
258
+ "help": "Defining the download_mode when loading the dataset. Options are `reuse_dataset_if_exists` (default), `reuse_cache_if_exists` and `force_redownload`."
259
+ },
260
+ )
261
+ evaluate_on_training_data: bool = field(
262
+ default=False,
263
+ metadata={"help": "Whether to evaluate on training data or not, to make sure the model can overfit."},
264
+ )
265
+ folder_suffix: str = field(
266
+ default="",
267
+ metadata={"help": "args to be suffixes for the output folder of the run"},
268
+ )
269
+ preprocess_only: bool = field(
270
+ default=False,
271
+ metadata={"help": "Preprocess only: Don't start training, just do the things before"},
272
+ )
273
+ assign_zero_to_too_long_val_examples: bool = field(
274
+ default=False,
275
+ metadata={
276
+ "help": "If true, all sequences longer then max_source_length will be assign a score of 0 in the metric evaluation"
277
+ },
278
+ )
279
+ shared_storage: bool = field(
280
+ default=True,
281
+ metadata={"help": "Whether nodes share the same storage"},
282
+ )
283
+ trim_very_long_strings: bool = field(
284
+ default=False,
285
+ metadata={"help": "Whether to trim very long strings before tokenizing them"},
286
+ )
287
+ pad_prefix: bool = field(
288
+ default=False,
289
+ metadata={
290
+ "help": "Whether to pad the prefix if it exists to max_prefix_length. "
291
+ "Note - important if you are using a SLED model on an input that contains an input_prefix"
292
+ },
293
+ )
294
+ test_start_ind: Optional[int] = field(
295
+ default=None,
296
+ metadata={"help": "if given, uses the test set starting from this index"},
297
+ )
298
+ test_end_ind: Optional[int] = field(
299
+ default=None,
300
+ metadata={"help": "if given, uses the test set ending at this index"},
301
+ )
302
+ # Uri:
303
+ patience: Optional[int] = field(
304
+ default=None,
305
+ )
306
+ length_penalty: Optional[float] = field(
307
+ default=1.0,
308
+ )
309
+ extra_metrics: Optional[List[str]] = field(
310
+ default=None,
311
+ metadata={"help": "The name of the metric to use (from src/metrics)."},
312
+ )
313
+ chunked_training_size: Optional[int] = field(
314
+ default=None,
315
+ )
316
+ oracle_training: Optional[bool] = field(
317
+ default=False,
318
+ metadata={"help": "If True, train on the input sentences that provide the highest ROUGE score with the labels"}
319
+ )
320
+ oracle_merge: Optional[bool] = field(
321
+ default=False,
322
+ metadata={"help": "If True, merge the oracle dataset and the standard training dataset"}
323
+ )
324
+ def __post_init__(self):
325
+ if self.val_max_target_length is None:
326
+ self.val_max_target_length = self.max_target_length
327
+ if self.pad_prefix and self.max_prefix_length == 0:
328
+ raise ValueError('When padding prefix, you must set a max_prefix_length')
329
+ assert self.max_prefix_length == 0 or self.max_prefix_length <= 0.5*self.max_source_length,\
330
+ 'If max_prefix_length is given, it must be much shorter than the total input'
331
+ # Uri:
332
+ if self.eval_max_source_length is None:
333
+ self.eval_max_source_length = self.max_source_length
334
+
335
+
336
+ @dataclass
337
+ class UnlimiformerArguments:
338
+ """
339
+ Arguments pertaining to what data we are going to input our model for training and eval.
340
+ """
341
+ test_unlimiformer: Optional[bool] = field(
342
+ default=False,
343
+ metadata={
344
+ "help": "whether to use KNN."
345
+ },
346
+ )
347
+ unlimiformer_verbose: Optional[bool] = field(
348
+ default=False,
349
+ metadata={
350
+ "help": "whether to print KNN intermediate predictions (mostly for debugging)."
351
+ },
352
+ )
353
+ layer_begin: Optional[int] = field(
354
+ default=0,
355
+ metadata={"help": "The layer to begin applying KNN to. KNN will be applied to layers[knn_layer_begin:layer_end]. "
356
+ "By default, it will be applied to all layers: [0:None]]"},
357
+ )
358
+ layer_end: Optional[int] = field(
359
+ default=None,
360
+ metadata={"help": "The layer to end applying KNN to. KNN will be applied to layers[knn_layer_begin:layer_end]. "
361
+ "By default, it will be applied to all layers: [0:None]]"},
362
+ )
363
+ unlimiformer_chunk_overlap: Optional[float] = field(
364
+ default=0.5,
365
+ metadata={"help": "The fraction of overlap between input chunks"},
366
+ )
367
+ unlimiformer_chunk_size: Optional[int] = field(
368
+ default=None,
369
+ metadata={"help": "The size of each input chunk"},
370
+ )
371
+ unlimiformer_head_num: Optional[int] = field(
372
+ default=None,
373
+ metadata={"help": "The head to apply KNN to (if None, apply to all heads)"},
374
+ )
375
+ unlimiformer_exclude: Optional[bool] = field(
376
+ default=False,
377
+ metadata={
378
+ "help": "If True, prioritize the inputs that are **not** in the standard attention window."
379
+ },
380
+ )
381
+ random_unlimiformer_training: Optional[bool] = field(
382
+ default=False,
383
+ )
384
+ unlimiformer_training: Optional[bool] = field(
385
+ default=False,
386
+ )
387
+ use_datastore: Optional[bool] = field(default=False)
388
+ flat_index: Optional[bool] = field(default=False)
389
+ test_datastore: Optional[bool] = field(default=False)
390
+ reconstruct_embeddings: Optional[bool] = field(default=False)
391
+ gpu_datastore: Optional[bool] = field(default=True)
392
+ gpu_index: Optional[bool] = field(default=True)
393
+
394
+
395
+ def main():
396
+ handle_args_to_ignore(sys.argv) # Just for sweeps
397
+
398
+ # See all possible arguments in src/transformers/training_args.py
399
+ # or by passing the --help flag to this script.
400
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
401
+
402
+ parser = CustomHfArgumentParser((ModelArguments, DataTrainingArguments, TrainingOverridesArguments, UnlimiformerArguments))
403
+ model_args, data_args, training_args, unlimiformer_args = parser.parse_dictionary_and_args()
404
+
405
+ set_up_logging(training_args)
406
+ logger.info(f"Training Arguments: {training_args}")
407
+ logger.info(f"Data Arguments: {data_args}")
408
+ logger.info(f"Model Arguments: {model_args}")
409
+ logger.info(f"Unlimiformer Arguments: {unlimiformer_args}")
410
+
411
+
412
+ # Added to avoid wandb.errors.UsageError: Error communicating with wandb process
413
+ wandb.init(settings=wandb.Settings(start_method="fork"), name=training_args.output_dir)
414
+
415
+ # Used to find missing dependencies early on
416
+ load_metric(data_args.metric_names, **locals())
417
+ load_extra_metrics(data_args.extra_metrics)
418
+
419
+ if data_args.source_prefix is None and model_args.model_name_or_path in [
420
+ "t5-small",
421
+ "t5-base",
422
+ "t5-large",
423
+ "t5-3b",
424
+ "t5-11b",
425
+ ]:
426
+ logger.warning(
427
+ "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
428
+ "`--source_prefix 'summarize: ' `"
429
+ )
430
+
431
+ # Detecting last checkpoint.
432
+ last_checkpoint = _detect_last_checkpoint(training_args)
433
+
434
+ # Set seed before initializing model.
435
+ set_seed(training_args.seed)
436
+
437
+ seq2seq_dataset = _get_dataset(data_args, model_args, training_args)
438
+
439
+ # Load pretrained model and tokenizer
440
+ #
441
+ # Distributed training:
442
+ # The .from_pretrained methods guarantee that only one local process can concurrently
443
+ # download model & vocab.
444
+ config_name = None
445
+ if model_args.config_name:
446
+ config_name = model_args.config_name
447
+ else:
448
+ if os.path.isfile(model_args.model_name_or_path):
449
+ config_name = os.path.dirname(model_args.model_name_or_path)
450
+ else:
451
+ config_name = model_args.model_name_or_path
452
+
453
+ config_overrides = {}
454
+ if training_args.gradient_checkpointing is not None:
455
+ config_overrides["gradient_checkpointing"] = training_args.gradient_checkpointing
456
+
457
+ config = AutoConfig.from_pretrained(
458
+ config_name,
459
+ cache_dir=model_args.cache_dir,
460
+ revision=model_args.model_revision,
461
+ use_auth_token=training_args.use_auth_token,
462
+ **config_overrides
463
+ )
464
+ # override for sled models to make sure we are explicit in our request
465
+ # if isinstance(config, SledConfig) and (not data_args.pad_prefix or data_args.max_prefix_length == 0):
466
+ # logger.warning('Setting prepend_prefix to False if using a SLED model, as the input does not have a prefix or '
467
+ # 'pad_prefix is False (all prefixes must be of the same length for SLED). If you do not use SLED '
468
+ # 'or finetune on a dataset with no prefixes, ignore this warning')
469
+ # config.prepend_prefix = False
470
+
471
+ if model_args.model_name_or_path is None:
472
+ # Padding for divisibility by 8
473
+ if config.vocab_size % 8 != 0 and training_args.fp16_padding:
474
+ config.vocab_size += 8 - (config.vocab_size % 8)
475
+
476
+ tokenizer_name = None
477
+ if model_args.tokenizer_name:
478
+ tokenizer_name = model_args.tokenizer_name
479
+ else:
480
+ if os.path.isfile(model_args.model_name_or_path):
481
+ tokenizer_name = os.path.dirname(model_args.model_name_or_path)
482
+ else:
483
+ tokenizer_name = model_args.model_name_or_path
484
+ tokenizer = AutoTokenizer.from_pretrained(
485
+ tokenizer_name,
486
+ cache_dir=model_args.cache_dir,
487
+ use_fast=model_args.use_fast_tokenizer,
488
+ revision=model_args.model_revision,
489
+ use_auth_token=training_args.use_auth_token,
490
+ )
491
+ if model_args.model_name_or_path is not None:
492
+ model = AutoModelForSeq2SeqLM.from_pretrained(
493
+ model_args.model_name_or_path,
494
+ from_tf=bool(".ckpt" in model_args.model_name_or_path),
495
+ config=config,
496
+ cache_dir=model_args.cache_dir,
497
+ revision=model_args.model_revision,
498
+ use_auth_token=training_args.use_auth_token,
499
+ )
500
+ else:
501
+ model = AutoModelForSeq2SeqLM.from_config(
502
+ config,
503
+ )
504
+ if unlimiformer_args.test_unlimiformer:
505
+ unlimiformer_kwargs = {
506
+ 'layer_begin': unlimiformer_args.layer_begin,
507
+ 'layer_end': unlimiformer_args.layer_end,
508
+ 'unlimiformer_head_num': unlimiformer_args.unlimiformer_head_num,
509
+ 'exclude_attention': unlimiformer_args.unlimiformer_exclude,
510
+ 'chunk_overlap': unlimiformer_args.unlimiformer_chunk_overlap,
511
+ 'model_encoder_max_len': unlimiformer_args.unlimiformer_chunk_size,
512
+ 'verbose': unlimiformer_args.unlimiformer_verbose, 'tokenizer': tokenizer,
513
+ 'unlimiformer_training': unlimiformer_args.unlimiformer_training,
514
+ 'use_datastore': unlimiformer_args.use_datastore,
515
+ 'flat_index': unlimiformer_args.flat_index,
516
+ 'test_datastore': unlimiformer_args.test_datastore,
517
+ 'reconstruct_embeddings': unlimiformer_args.reconstruct_embeddings,
518
+ 'gpu_datastore': unlimiformer_args.gpu_datastore,
519
+ 'gpu_index': unlimiformer_args.gpu_index
520
+ }
521
+ if unlimiformer_args.random_unlimiformer_training:
522
+ model = RandomTrainingUnlimiformer.convert_model(model, **unlimiformer_kwargs)
523
+ else:
524
+ model = Unlimiformer.convert_model(model, **unlimiformer_kwargs)
525
+
526
+ model.config.use_cache = True
527
+ if training_args.gradient_checkpointing and getattr(model.config, 'use_cache', False) and training_args.do_train:
528
+ logger.warning('Cannot use cache in models when using gradient checkpointing. turning it off')
529
+ model.config.use_cache = False
530
+
531
+ model.resize_token_embeddings(len(tokenizer))
532
+
533
+ if model.config.decoder_start_token_id is None:
534
+ raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
535
+
536
+ prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
537
+
538
+ # Preprocessing the datasets.
539
+ # We need to tokenize inputs and targets.
540
+ if training_args.do_train:
541
+ column_names = seq2seq_dataset["train"].column_names
542
+ elif training_args.do_eval:
543
+ column_names = seq2seq_dataset["validation"].column_names
544
+ elif training_args.do_predict:
545
+ column_names = seq2seq_dataset["test"].column_names
546
+ else:
547
+ logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
548
+ return
549
+
550
+ # Get the column names for input/target.
551
+ if data_args.input_column is None:
552
+ input_column = "input"
553
+ else:
554
+ input_column = data_args.input_column
555
+ if input_column not in column_names:
556
+ raise ValueError(
557
+ f"--input_column' value '{data_args.input_column}' needs to be one of: {', '.join(column_names)}"
558
+ )
559
+ if data_args.input_prefix_column is None:
560
+ input_prefix_column = "input_prefix"
561
+ else:
562
+ input_prefix_column = data_args.input_prefix_column
563
+ if input_prefix_column not in column_names:
564
+ raise ValueError(
565
+ f"--input_prefix_column' value '{data_args.input_prefix_column}' needs to be one of: {', '.join(column_names)}"
566
+ )
567
+ if data_args.output_column is None:
568
+ output_column = "output"
569
+ else:
570
+ output_column = data_args.output_column
571
+ if output_column not in column_names:
572
+ raise ValueError(
573
+ f"--output_column' value '{data_args.output_column}' needs to be one of: {', '.join(column_names)}"
574
+ )
575
+
576
+ # Temporarily set max_target_length for training.
577
+ max_target_length = data_args.max_target_length
578
+ padding = "max_length" if data_args.pad_to_max_length else False
579
+
580
+ if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
581
+ logger.warning(
582
+ "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
583
+ f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
584
+ )
585
+
586
+ def preprocess_function_kwargs_fn():
587
+ return {
588
+ "tokenizer": deepcopy(tokenizer),
589
+ "prefix": prefix,
590
+ "input_column": input_column,
591
+ "input_prefix_column": input_prefix_column,
592
+ "output_column": output_column,
593
+ "max_source_length": data_args.max_source_length,
594
+ "max_prefix_length": data_args.max_prefix_length,
595
+ "max_target_length": max_target_length,
596
+ "prefix_sep": PREFIX_DOC_SEP,
597
+ "padding": padding,
598
+ "ignore_pad_token_for_loss": data_args.ignore_pad_token_for_loss,
599
+ "assign_zero_to_too_long_val_examples": data_args.assign_zero_to_too_long_val_examples,
600
+ "trim_very_long_strings": data_args.trim_very_long_strings,
601
+ "pad_prefix": data_args.pad_prefix
602
+ }
603
+
604
+ if training_args.do_train:
605
+ if "train" not in seq2seq_dataset:
606
+ raise ValueError("--do_train requires a train dataset")
607
+ logger.info("")
608
+ logger.info("Training examples before tokenization:")
609
+ if input_prefix_column in column_names:
610
+ logger.info(f"input_prefix #0: {seq2seq_dataset['train'][0][input_prefix_column]}")
611
+ # logger.info(f"input #0: {seq2seq_dataset['train'][0]['input']}")
612
+ # logger.info(f"output #0: {seq2seq_dataset['train'][0]['output']}")
613
+ if input_prefix_column in column_names:
614
+ logger.info(f"input_prefix #1: {seq2seq_dataset['train'][1][input_prefix_column]}")
615
+ # logger.info(f"input #1: {seq2seq_dataset['train'][1]['input']}")
616
+ # logger.info(f"output #1: {seq2seq_dataset['train'][1]['output']}")
617
+ logger.info("")
618
+ untokenized_train_dataset = seq2seq_dataset["train"]
619
+ if data_args.max_train_samples is not None:
620
+ untokenized_train_dataset = untokenized_train_dataset.select(range(data_args.max_train_samples))
621
+
622
+ if DEBUG:
623
+ # In debug mode, we want to recreate the data
624
+ data_args.shared_storage = False
625
+ data_args.overwrite_cache = True
626
+ with training_args.main_process_first(
627
+ local=not data_args.shared_storage, desc="train dataset map pre-processing"
628
+ ):
629
+
630
+ if data_args.oracle_training:
631
+ logger.info("Using oracle training")
632
+ oracle_processed_dir = f'oracle_input_{data_args.dataset_config_name}'
633
+ if os.path.isdir(oracle_processed_dir):
634
+ logger.info(f"Using oracle training from {oracle_processed_dir}")
635
+ oracle_training_set = datasets.load_from_disk(oracle_processed_dir)
636
+ else:
637
+ rouge_scorer = datasets.load_metric('rouge')
638
+ oracle_training_set = untokenized_train_dataset.map(
639
+ extract_oracle_sent_batch,
640
+ fn_kwargs={'max_length': data_args.max_source_length,
641
+ 'tokenizer': tokenizer,
642
+ 'rouge_scorer': rouge_scorer},
643
+ batched=True,
644
+ batch_size=1,
645
+ num_proc=data_args.preprocessing_num_workers,
646
+ load_from_cache_file=not data_args.overwrite_cache,
647
+ desc="Extracting oracle sentences from every training example",
648
+ )
649
+ oracle_training_set.save_to_disk(oracle_processed_dir)
650
+
651
+
652
+ if data_args.oracle_merge:
653
+ untokenized_train_dataset = datasets.concatenate_datasets([untokenized_train_dataset, oracle_training_set])
654
+ untokenized_train_dataset = untokenized_train_dataset.shuffle(seed=training_args.seed)
655
+ else:
656
+ untokenized_train_dataset = oracle_training_set
657
+
658
+ train_dataset = untokenized_train_dataset.map(
659
+ preprocess_function,
660
+ fn_kwargs=preprocess_function_kwargs_fn(),
661
+ batched=True,
662
+ num_proc=data_args.preprocessing_num_workers,
663
+ remove_columns=untokenized_train_dataset.column_names,
664
+ load_from_cache_file=not data_args.overwrite_cache,
665
+ desc="Running tokenizer on train dataset",
666
+ )
667
+
668
+ if data_args.chunked_training_size is not None:
669
+ train_dataset = train_dataset.map(
670
+ chunk_dataset_function,
671
+ fn_kwargs={'chunk_size': data_args.chunked_training_size},
672
+ batched=True,
673
+ num_proc=data_args.preprocessing_num_workers,
674
+ load_from_cache_file=not data_args.overwrite_cache,
675
+ desc="Chunking train dataset source",
676
+ )
677
+ train_dataset = train_dataset.shuffle(seed=training_args.seed)
678
+
679
+ if training_args.do_eval:
680
+ max_target_length = data_args.val_max_target_length
681
+ preprocess_function_kwargs = preprocess_function_kwargs_fn()
682
+ preprocess_function_kwargs["max_target_length"] = max_target_length
683
+ preprocess_function_kwargs['max_source_length'] = data_args.eval_max_source_length
684
+ if "validation" not in seq2seq_dataset:
685
+ raise ValueError("--do_eval requires a validation dataset")
686
+ logger.info("")
687
+ logger.info("Validation examples before tokenization:")
688
+ if input_prefix_column in column_names:
689
+ logger.info(f"input_prefix #0: {seq2seq_dataset['validation'][0][input_prefix_column]}")
690
+ # logger.info(f"input #0: {seq2seq_dataset['validation'][0]['input']}")
691
+ # logger.info(f"output #0: {seq2seq_dataset['validation'][0]['output']}")
692
+ if input_prefix_column in column_names:
693
+ logger.info(f"input_prefix #1: {seq2seq_dataset['validation'][1][input_prefix_column]}")
694
+ # logger.info(f"input #1: {seq2seq_dataset['validation'][1]['input']}")
695
+ # logger.info(f"output #1: {seq2seq_dataset['validation'][1]['output']}")
696
+ logger.info("")
697
+ untokenized_eval_dataset = seq2seq_dataset["validation"]
698
+ if data_args.max_eval_samples is not None:
699
+ untokenized_eval_dataset = untokenized_eval_dataset.select(range(data_args.max_eval_samples))
700
+ if model_args.drop_duplicates_in_eval is True:
701
+ untokenized_eval_dataset = drop_duplicates_in_input(untokenized_eval_dataset)
702
+ untokenized_eval_dataset_orig = untokenized_eval_dataset
703
+ assert training_args.eval_fraction > 0
704
+ n = len(untokenized_eval_dataset)
705
+ training_args = replace(training_args, eval_fraction = min(training_args.eval_fraction, n))
706
+ if training_args.eval_fraction != 1:
707
+ if training_args.eval_fraction > 1:
708
+ assert training_args.eval_fraction == int(training_args.eval_fraction)
709
+ logger.info(f'using predetermined absolute samples from eval set ({training_args.eval_fraction} )')
710
+ training_args = replace(training_args, eval_fraction = training_args.eval_fraction / n)
711
+ indices = np.random.permutation(n)[:int(np.ceil(max(1, training_args.eval_fraction * n)))]
712
+ untokenized_eval_dataset = type(untokenized_eval_dataset).from_dict(untokenized_eval_dataset[indices])
713
+ logger.info(f'During training, will only use {training_args.eval_fraction:.3%} samples of the eval set '
714
+ f'which amounts to {len(untokenized_eval_dataset)} out of {n} samples')
715
+
716
+ eval_dataset = process_eval_set(data_args, preprocess_function_kwargs, training_args, untokenized_eval_dataset)
717
+ eval_dataset_orig = eval_dataset
718
+ if training_args.eval_fraction < 1:
719
+ eval_dataset_orig = process_eval_set(data_args, preprocess_function_kwargs, training_args,
720
+ untokenized_eval_dataset_orig)
721
+
722
+ if training_args.do_predict:
723
+ max_target_length = data_args.val_max_target_length
724
+ preprocess_function_kwargs = preprocess_function_kwargs_fn()
725
+ preprocess_function_kwargs["max_target_length"] = max_target_length
726
+ preprocess_function_kwargs['max_source_length'] = data_args.eval_max_source_length
727
+ if "test" not in seq2seq_dataset:
728
+ raise ValueError("--do_predict requires a test dataset")
729
+ untokenized_predict_dataset = seq2seq_dataset["test"]
730
+ if data_args.max_predict_samples is not None:
731
+ untokenized_predict_dataset = untokenized_predict_dataset.select(range(data_args.max_predict_samples))
732
+ if model_args.drop_duplicates_in_eval is True:
733
+ untokenized_predict_dataset = drop_duplicates_in_input(untokenized_predict_dataset)
734
+
735
+ if output_column in untokenized_predict_dataset.column_names:
736
+ untokenized_predict_dataset = untokenized_predict_dataset.remove_columns(output_column)
737
+
738
+ if data_args.test_start_ind is not None:
739
+ sind = data_args.test_start_ind
740
+ eind = -1 if data_args.test_end_ind is None else data_args.test_end_ind
741
+ logger.info(f'Using only a subset of the test dataset [{sind}, {eind}]')
742
+ untokenized_predict_dataset = type(untokenized_predict_dataset).from_dict(untokenized_predict_dataset[sind:eind])
743
+
744
+ with training_args.main_process_first(
745
+ local=not data_args.shared_storage, desc="prediction dataset map pre-processing"
746
+ ):
747
+ predict_dataset = untokenized_predict_dataset.map(
748
+ preprocess_function,
749
+ fn_kwargs=preprocess_function_kwargs,
750
+ batched=True,
751
+ num_proc=data_args.preprocessing_num_workers,
752
+ remove_columns=untokenized_predict_dataset.column_names,
753
+ load_from_cache_file=not data_args.overwrite_cache,
754
+ desc="Running tokenizer on prediction dataset",
755
+ )
756
+
757
+ if data_args.preprocess_only:
758
+ logger.info(f"With --preprocess_only, exiting after preprocess_on the data")
759
+ exit()
760
+
761
+ # Data collator
762
+ label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
763
+ pad_to = 8 if training_args.fp16 and training_args.fp16_padding else None
764
+
765
+
766
+ data_collator = DataCollatorForSeq2Seq(
767
+ tokenizer,
768
+ model=model,
769
+ label_pad_token_id=label_pad_token_id,
770
+ pad_to_multiple_of=pad_to,
771
+ )
772
+
773
+ # Metric
774
+ compute_metrics = load_metric(data_args.metric_names, **locals())
775
+ compute_metrics = load_extra_metrics(data_args.extra_metrics, compute_metrics)
776
+
777
+ # Initialize our Trainer
778
+ trainer = CustomTrainer(
779
+ model=model,
780
+ args=training_args,
781
+ train_dataset=train_dataset if training_args.do_train else None,
782
+ eval_dataset=eval_dataset if training_args.do_eval else None,
783
+ untokenized_eval_dataset=untokenized_eval_dataset if training_args.do_eval else None,
784
+ tokenizer=tokenizer,
785
+ data_collator=data_collator,
786
+ compute_metrics=compute_metrics if training_args.predict_with_generate else None,
787
+ output_dir=training_args.output_dir,
788
+ data_args=data_args,
789
+ callbacks=[EarlyStoppingCallback(early_stopping_patience=data_args.patience)] if data_args.patience is not None else None,
790
+ )
791
+
792
+ # setup_cometml_trainer_callback(trainer)
793
+
794
+ # Training
795
+ if training_args.do_train:
796
+ checkpoint = None
797
+ if training_args.resume_from_checkpoint is not None:
798
+ checkpoint = training_args.resume_from_checkpoint
799
+ elif last_checkpoint is not None:
800
+ checkpoint = last_checkpoint # look for checkpoints in the outdir
801
+
802
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
803
+ logger.info('Done training')
804
+ trainer.save_model() # Saves the tokenizer too for easy upload
805
+
806
+ metrics = train_result.metrics
807
+ max_train_samples = (
808
+ data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
809
+ )
810
+ metrics["train_samples"] = min(max_train_samples, len(train_dataset))
811
+
812
+ trainer.log_metrics("train", metrics)
813
+ trainer.save_metrics("train", metrics)
814
+ trainer.save_state()
815
+
816
+ # Evaluation
817
+ results = {}
818
+ if training_args.do_eval:
819
+ logger.info("*** Evaluate ***")
820
+
821
+ if training_args.eval_fraction < 1:
822
+ logger.info('setting the eval set back to the full one')
823
+ trainer.eval_dataset = eval_dataset_orig
824
+ trainer._untokenized_eval_dataset = untokenized_eval_dataset_orig
825
+
826
+ metrics = trainer.evaluate(metric_key_prefix="eval", use_cache=True, length_penalty=data_args.length_penalty)
827
+ logger.info('Done evaluating')
828
+
829
+ max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
830
+ metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
831
+
832
+ trainer.log_metrics("eval", metrics)
833
+ trainer.save_metrics("eval", metrics)
834
+
835
+ if training_args.do_predict:
836
+ logger.info("*** Predict ***")
837
+ trainer.args.predict_with_generate = True # during prediction, we don't have labels
838
+
839
+ # load last (and best) model, or the one specified if any
840
+ logger.info("*** Loading model weights before the prediction ***")
841
+ last_checkpoint = model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else _detect_last_checkpoint(training_args)
842
+ if last_checkpoint is not None and os.path.isdir(last_checkpoint):
843
+ logger.info(f'Loading weights from {last_checkpoint} for the prediction')
844
+ state_dict = torch.load(os.path.join(last_checkpoint, WEIGHTS_NAME), map_location="cpu")
845
+ # If the model is on the GPU, it still works!
846
+ # trainer._load_state_dict_in_model(state_dict)
847
+ # release memory
848
+ del state_dict
849
+ logger.info("*** Done loading weights ***")
850
+ elif training_args.do_train:
851
+ raise ValueError('Could not find a model to load for prediction')
852
+ else:
853
+ logger.info(f'Using {model_args.model_name_or_path} as the model for the prediction')
854
+
855
+ predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict", use_cache=True)
856
+ logger.info('Done predicting')
857
+
858
+ metrics = predict_results.metrics
859
+ max_predict_samples = (
860
+ data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
861
+ )
862
+ metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
863
+
864
+ trainer.log_metrics("predict", metrics)
865
+ trainer.save_metrics("predict", metrics)
866
+
867
+ if trainer.is_world_process_zero():
868
+ if training_args.predict_with_generate:
869
+ id_to_prediction = {}
870
+ for i, instance in enumerate(untokenized_predict_dataset):
871
+ id_to_prediction[instance["id"]] = predict_results.predictions[i]
872
+ predictions = decode(id_to_prediction, tokenizer, data_args)
873
+ output_name = "generated_predictions.json"
874
+ if data_args.test_start_ind is not None:
875
+ output_name = f"generated_predictions_{data_args.test_start_ind}_{data_args.test_end_ind}.json"
876
+ output_prediction_file = os.path.join(training_args.output_dir, output_name)
877
+ with open(output_prediction_file, "w") as writer:
878
+ json.dump(predictions, writer, indent=4)
879
+
880
+ if training_args.push_to_hub:
881
+ kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"}
882
+ if data_args.dataset_name is not None:
883
+ kwargs["dataset_tags"] = data_args.dataset_name
884
+ if data_args.dataset_config_name is not None:
885
+ kwargs["dataset_args"] = data_args.dataset_config_name
886
+ kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
887
+ else:
888
+ kwargs["dataset"] = data_args.dataset_name
889
+
890
+ trainer.push_to_hub(**kwargs)
891
+
892
+ return results
893
+
894
+ def _detect_last_checkpoint(training_args):
895
+ last_checkpoint = None
896
+ if os.path.isdir(training_args.output_dir) and training_args.do_train:
897
+ if not training_args.overwrite_output_dir:
898
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
899
+
900
+ if last_checkpoint is not None and training_args.resume_from_checkpoint is None:
901
+ logger.info(
902
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
903
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
904
+ )
905
+ return last_checkpoint
906
+
907
+ def process_eval_set(data_args, preprocess_function_kwargs, training_args, untokenized_eval_dataset):
908
+ with training_args.main_process_first(
909
+ local=not data_args.shared_storage, desc="validation dataset map pre-processing"
910
+ ):
911
+ eval_dataset = untokenized_eval_dataset.map(
912
+ preprocess_function,
913
+ fn_kwargs=preprocess_function_kwargs,
914
+ batched=True,
915
+ num_proc=data_args.preprocessing_num_workers,
916
+ remove_columns=untokenized_eval_dataset.column_names,
917
+ load_from_cache_file=not data_args.overwrite_cache,
918
+ desc="Running tokenizer on validation dataset",
919
+ )
920
+ return eval_dataset
921
+
922
+
923
+ def _get_dataset(data_args, model_args, training_args):
924
+ # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
925
+ # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
926
+ # (the dataset will be downloaded automatically from the datasets Hub).
927
+ #
928
+ # For CSV/JSON files this script will use the first column for the full texts and the second column for the
929
+ # summaries (unless you specify column names for this with the `input_column` and `output_column` arguments).
930
+ #
931
+ # In distributed training, the load_dataset function guarantee that only one local process can concurrently
932
+ # download the dataset.
933
+ data_files = None
934
+ if data_args.train_file is not None or data_args.validation_file is not None or data_args.test_file is not None:
935
+ data_files = {}
936
+ if data_args.train_file is not None:
937
+ data_files["train"] = data_args.train_file
938
+ if data_args.validation_file is not None:
939
+ data_files["validation"] = data_args.validation_file
940
+ if data_args.test_file is not None:
941
+ data_files["test"] = data_args.test_file
942
+ # Downloading and loading a dataset from the hub/local script.
943
+ seq2seq_dataset = load_dataset(
944
+ data_args.dataset_name,
945
+ data_args.dataset_config_name,
946
+ verification_mode='no_checks',
947
+ cache_dir=model_args.cache_dir,
948
+ data_dir=data_args.data_dir,
949
+ data_files=data_files,
950
+ download_mode=data_args.download_mode,
951
+ use_auth_token=training_args.use_auth_token
952
+ )
953
+ if training_args.do_train:
954
+ training_args.apply_overrides(len(seq2seq_dataset['train']))
955
+ if data_args.evaluate_on_training_data:
956
+ seq2seq_dataset["validation"] = seq2seq_dataset["train"]
957
+
958
+ # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
959
+ # https://huggingface.co/docs/datasets/loading_datasets.html.
960
+
961
+ return seq2seq_dataset
962
+
963
+
964
+ def set_up_logging(training_args):
965
+ logging.basicConfig(
966
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
967
+ datefmt="%m/%d/%Y %H:%M:%S",
968
+ handlers=[logging.StreamHandler(sys.stdout)],
969
+ )
970
+ log_level = training_args.get_process_log_level()
971
+ logger.setLevel(log_level)
972
+ datasets.utils.logging.set_verbosity(log_level)
973
+ transformers.utils.logging.set_verbosity(log_level)
974
+ transformers.utils.logging.enable_default_handler()
975
+ transformers.utils.logging.enable_explicit_format()
976
+ # Log on each process the small summary:
977
+ logger.warning(
978
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
979
+ + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
980
+ )
981
+ logger.info(f"Training/evaluation parameters {training_args}")
982
+
983
+ def extract_oracle_sent_batch(examples, max_length, tokenizer, rouge_scorer):
984
+ items = examples.data.items()
985
+ keys = [item[0] for item in items]
986
+ values = [item[1] for item in items]
987
+ extracted = {k: [] for k in keys}
988
+ input_str = 'input'
989
+
990
+ for ex in zip(*values):
991
+ ex = dict(zip(keys, ex))
992
+ ex_input = ex[input_str]
993
+ extracted_input = extract_oracle_sentences(ex_input, ex['output'], max_length, tokenizer, rouge_scorer)
994
+ extracted[input_str].append(extracted_input)
995
+ for k in set(keys) - {input_str}:
996
+ extracted[k].append(ex[k])
997
+ return extracted
998
+
999
+ def extract_oracle_sentences(input_sequence, output, max_length, tokenizer, rouge_scorer, criterion='rouge/geometric_mean'):
1000
+ sentences = nltk.sent_tokenize(input_sequence)
1001
+ selected_mask = [False for _ in sentences]
1002
+
1003
+ max_rouge = 0.0
1004
+ joined_selection = ''
1005
+ counter = 0
1006
+ while len(tokenizer(joined_selection)) < max_length and counter < 100:
1007
+ cur_max_rouge = max_rouge
1008
+ max_index = -1
1009
+
1010
+ cur_candidate_indices = []
1011
+ cur_candidates = []
1012
+ for i in range(len(sentences)):
1013
+ if selected_mask[i]:
1014
+ # We already selected this sentence
1015
+ continue
1016
+ candidate_mask = list(selected_mask)
1017
+ candidate_mask[i] = True
1018
+ candidate_prediction = ' '.join(sent for sent, mask in zip(sentences, candidate_mask) if mask)
1019
+ cur_candidates.append(candidate_prediction)
1020
+ cur_candidate_indices.append(i)
1021
+
1022
+ rouge = rouge_scorer.compute(predictions=cur_candidates, references=[[output]] * len(cur_candidates), use_aggregator=False)
1023
+ aggregated_rouge_types = [s1.fmeasure * s2.fmeasure * sL.fmeasure for s1, s2, sL in zip(rouge['rouge1'], rouge['rouge2'], rouge['rougeLsum'])]
1024
+ max_index = np.argmax(aggregated_rouge_types)
1025
+ cur_max_rouge = aggregated_rouge_types[max_index]
1026
+
1027
+ if max_rouge >= cur_max_rouge:
1028
+ # No sentence improves the score
1029
+ break
1030
+
1031
+ selected_mask[cur_candidate_indices[max_index]] = True
1032
+ max_rouge = cur_max_rouge
1033
+ joined_selection = ' '.join(sent for sent, mask in zip(sentences, selected_mask) if mask)
1034
+ counter += 1
1035
+
1036
+ return joined_selection
1037
+
1038
+
1039
+ def chunk_dataset_function(examples, chunk_size):
1040
+ input_ids_str = 'input_ids'
1041
+ attention_mask_str = 'attention_mask'
1042
+ items = examples.data.items()
1043
+ keys = [item[0] for item in items]
1044
+ values = [item[1] for item in items]
1045
+ chunked = {k: [] for k in keys}
1046
+ for ex in zip(*values):
1047
+ ex = dict(zip(keys, ex))
1048
+ for i in range(0, len(ex[input_ids_str]), chunk_size):
1049
+ chunked_input_ids_st = ex[input_ids_str][i:i + chunk_size]
1050
+ chunked_attention_mask = ex[attention_mask_str][i:i + chunk_size]
1051
+
1052
+ if sum(chunked_attention_mask) < 10:
1053
+ continue
1054
+ chunked[input_ids_str].append(chunked_input_ids_st)
1055
+ chunked[attention_mask_str].append(chunked_attention_mask)
1056
+ for k in set(keys) - {input_ids_str, attention_mask_str}:
1057
+ chunked[k].append(ex[k])
1058
+ return chunked
1059
+
1060
+
1061
+
1062
+ def preprocess_function(
1063
+ examples,
1064
+ tokenizer,
1065
+ prefix,
1066
+ input_column,
1067
+ input_prefix_column,
1068
+ output_column,
1069
+ max_source_length,
1070
+ max_prefix_length,
1071
+ max_target_length,
1072
+ prefix_sep,
1073
+ padding,
1074
+ ignore_pad_token_for_loss,
1075
+ assign_zero_to_too_long_val_examples,
1076
+ trim_very_long_strings,
1077
+ pad_prefix
1078
+ ):
1079
+ if not isinstance(examples[input_column][0], str):
1080
+ model_inputs = _preprocess_tokenized_inputs()
1081
+ else:
1082
+ model_inputs = _preprocess_raw_inputs(assign_zero_to_too_long_val_examples, examples, input_column, input_prefix_column,
1083
+ max_source_length, padding, prefix, tokenizer, trim_very_long_strings, max_prefix_length,
1084
+ prefix_sep, pad_prefix)
1085
+
1086
+ _preprocess_targets(examples, ignore_pad_token_for_loss, max_target_length, model_inputs, output_column, padding, tokenizer)
1087
+ model_inputs["length"] = [len(x) for x in model_inputs["input_ids"]]
1088
+ return model_inputs
1089
+
1090
+
1091
+ def _preprocess_raw_inputs(assign_zero_to_too_long_val_examples, examples, input_column, input_prefix_column,
1092
+ max_source_length, padding, prefix, tokenizer, trim_very_long_strings, max_prefix_length,
1093
+ prefix_sep, pad_prefix):
1094
+ inputs = examples[input_column]
1095
+
1096
+ # the given prefix is what used in models like T5 (e.g. "summarize: ")
1097
+ # if prefix exists, it is added to the input_prefixes
1098
+ if input_prefix_column in examples.keys():
1099
+ input_prefixes = [inp + prefix_sep for inp in examples[input_prefix_column]]
1100
+ if prefix != "":
1101
+ input_prefixes = [prefix + inp for inp in input_prefixes]
1102
+ elif prefix != "":
1103
+ inputs = [prefix + inp for inp in inputs]
1104
+
1105
+ # tokenize the input prefix if it exists
1106
+ model_prefix_inputs = None
1107
+ if input_prefix_column in examples.keys():
1108
+ if trim_very_long_strings:
1109
+ input_prefixes = [inp[: max_prefix_length * 7] for inp in input_prefixes]
1110
+ if pad_prefix:
1111
+ model_prefix_inputs = tokenizer(input_prefixes, max_length=max_prefix_length, padding='max_length', truncation=True)
1112
+ else:
1113
+ # for led, we do not pad the prefix
1114
+ model_prefix_inputs = tokenizer(input_prefixes, max_length=max_source_length, padding='do_not_pad', truncation=True)
1115
+
1116
+ if trim_very_long_strings:
1117
+ inputs = [inp[: max_source_length * 7] for inp in inputs]
1118
+ model_inputs = tokenizer(inputs, max_length=max_source_length, padding=padding, truncation=True)
1119
+
1120
+ if max_source_length is not None and assign_zero_to_too_long_val_examples:
1121
+ model_inputs_untrimmed = tokenizer(inputs)
1122
+ model_inputs["not_valid_for_eval"] = [
1123
+ len(token_ids) > max_source_length for token_ids in model_inputs_untrimmed["input_ids"]
1124
+ ]
1125
+ else:
1126
+ model_inputs["not_valid_for_eval"] = [False] * len(model_inputs["input_ids"])
1127
+
1128
+ # now, combine the concat prefix to the input, trimming it to max_source_length if given
1129
+ if model_prefix_inputs is not None:
1130
+ max_source_length = max_source_length or -1
1131
+ model_inputs['input_ids'] = [(inp1+inp2)[:max_source_length] for inp1, inp2
1132
+ in zip(model_prefix_inputs['input_ids'], model_inputs['input_ids'])]
1133
+ model_inputs['attention_mask'] = [(inp1+inp2)[:max_source_length] for inp1, inp2
1134
+ in zip(model_prefix_inputs['attention_mask'], model_inputs['attention_mask'])]
1135
+ # add prefix_length
1136
+ if pad_prefix:
1137
+ # no need to go over them as they will all be of the same length
1138
+ model_inputs['prefix_length'] = [max_prefix_length] * len(model_inputs['input_ids'])
1139
+ else:
1140
+ model_inputs['prefix_length'] = [len(inp) for inp in model_prefix_inputs['input_ids']]
1141
+
1142
+ return model_inputs
1143
+
1144
+ def _preprocess_targets(examples, ignore_pad_token_for_loss, max_target_length, model_inputs, output_column, padding, tokenizer):
1145
+ targets = examples[output_column] if output_column in examples else None
1146
+ if targets is not None:
1147
+ if not isinstance(targets[0], str):
1148
+ if max_target_length is not None:
1149
+ targets = [target[:max_target_length] for target in targets]
1150
+ model_inputs["labels"] = targets
1151
+ else:
1152
+ # Setup the tokenizer for targets
1153
+ with tokenizer.as_target_tokenizer():
1154
+ labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)
1155
+
1156
+ # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
1157
+ # padding in the loss.
1158
+ if padding == "max_length" and ignore_pad_token_for_loss:
1159
+ labels["input_ids"] = [
1160
+ [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
1161
+ ]
1162
+
1163
+ model_inputs["labels"] = labels["input_ids"]
1164
+
1165
+ def load_extra_metrics(metric_names, loaded_metrics=None):
1166
+ if loaded_metrics is None:
1167
+ loaded_metrics = MetricCollection([])
1168
+ if metric_names is not None:
1169
+ for metric_name in metric_names:
1170
+ if len(metric_name) > 0:
1171
+ loaded_metrics._metrics.append(HFMetricWrapper(metric_name))
1172
+ return loaded_metrics
1173
+
1174
+ def _mp_fn(index):
1175
+ # For xla_spawn (TPUs)
1176
+ main()
1177
+
1178
+
1179
+ if __name__ == "__main__":
1180
+ main()
unlimiformer/run_generation.py ADDED
@@ -0,0 +1,577 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
4
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """ Conditional text generation with the auto-regressive models of the library (GPT/GPT-2/CTRL/Transformer-XL/XLNet)
18
+ """
19
+
20
+
21
+ import argparse
22
+ import inspect
23
+ import logging
24
+
25
+ from dataclasses import dataclass, field
26
+ from typing import Tuple, List, Optional, Union
27
+
28
+ import numpy as np
29
+ import torch
30
+ import os
31
+
32
+ normal_repr = torch.Tensor.__repr__
33
+ torch.Tensor.__repr__ = lambda self: f"{self.shape}_{normal_repr(self)}"
34
+
35
+ from transformers import (
36
+ AutoTokenizer,
37
+ BloomForCausalLM,
38
+ BloomTokenizerFast,
39
+ CTRLLMHeadModel,
40
+ CTRLTokenizer,
41
+ GenerationMixin,
42
+ GPT2LMHeadModel,
43
+ GPT2Tokenizer,
44
+ GPTJForCausalLM,
45
+ HfArgumentParser,
46
+ LlamaForCausalLM,
47
+ LlamaTokenizer,
48
+ OpenAIGPTLMHeadModel,
49
+ OpenAIGPTTokenizer,
50
+ OPTForCausalLM,
51
+ TransfoXLLMHeadModel,
52
+ TransfoXLTokenizer,
53
+ XLMTokenizer,
54
+ XLMWithLMHeadModel,
55
+ XLNetLMHeadModel,
56
+ XLNetTokenizer,
57
+ TextStreamer,
58
+ )
59
+ from transformers.modeling_outputs import CausalLMOutputWithPast
60
+
61
+ from unlimiformer import Unlimiformer
62
+ from random_training_unlimiformer import RandomTrainingUnlimiformer
63
+
64
+ @dataclass
65
+ class UnlimiformerArguments:
66
+ """
67
+ Arguments pertaining to what data we are going to input our model for training and eval.
68
+ """
69
+ test_unlimiformer: Optional[bool] = field(
70
+ default=False,
71
+ metadata={
72
+ "help": "whether to use KNN."
73
+ },
74
+ )
75
+ unlimiformer_verbose: Optional[bool] = field(
76
+ default=False,
77
+ metadata={
78
+ "help": "whether to print KNN intermediate predictions (mostly for debugging)."
79
+ },
80
+ )
81
+ layer_begin: Optional[int] = field(
82
+ default=0,
83
+ metadata={"help": "The layer to begin applying KNN to. KNN will be applied to layers[knn_layer_begin:layer_end]. "
84
+ "By default, it will be applied to all layers: [0:None]]"},
85
+ )
86
+ layer_end: Optional[int] = field(
87
+ default=None,
88
+ metadata={"help": "The layer to end applying KNN to. KNN will be applied to layers[knn_layer_begin:layer_end]. "
89
+ "By default, it will be applied to all layers: [0:None]]"},
90
+ )
91
+ unlimiformer_chunk_overlap: Optional[float] = field(
92
+ default=0.5,
93
+ metadata={"help": "The fraction of overlap between input chunks"},
94
+ )
95
+ unlimiformer_chunk_size: Optional[int] = field(
96
+ default=None,
97
+ metadata={"help": "The size of each input chunk"},
98
+ )
99
+ unlimiformer_head_num: Optional[int] = field(
100
+ default=None,
101
+ metadata={"help": "The head to apply KNN to (if None, apply to all heads)"},
102
+ )
103
+ unlimiformer_exclude: Optional[bool] = field(
104
+ default=False,
105
+ metadata={
106
+ "help": "If True, prioritize the inputs that are **not** in the standard attention window."
107
+ },
108
+ )
109
+ random_unlimiformer_training: Optional[bool] = field(
110
+ default=False,
111
+ )
112
+ unlimiformer_training: Optional[bool] = field(
113
+ default=False,
114
+ )
115
+ index_devices: Optional[List[int]] = field(
116
+ default_factory=lambda: (0,),
117
+ )
118
+ datastore_device: Optional[int] = field(
119
+ default=0,
120
+ )
121
+ use_datastore: Optional[bool] = field(default=True)
122
+ flat_index: Optional[bool] = field(default=True)
123
+ test_datastore: Optional[bool] = field(default=False)
124
+ reconstruct_embeddings: Optional[bool] = field(default=False)
125
+ gpu_datastore: Optional[bool] = field(default=True)
126
+ gpu_index: Optional[bool] = field(default=True)
127
+
128
+
129
+ logging.basicConfig(
130
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
131
+ datefmt="%m/%d/%Y %H:%M:%S",
132
+ level=logging.INFO,
133
+ )
134
+ logger = logging.getLogger(__name__)
135
+
136
+ MAX_LENGTH = int(10000) # Hardcoded max length to avoid infinite loop
137
+
138
+ MODEL_CLASSES = {
139
+ "gpt2": (GPT2LMHeadModel, GPT2Tokenizer),
140
+ "ctrl": (CTRLLMHeadModel, CTRLTokenizer),
141
+ "openai-gpt": (OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
142
+ "xlnet": (XLNetLMHeadModel, XLNetTokenizer),
143
+ "transfo-xl": (TransfoXLLMHeadModel, TransfoXLTokenizer),
144
+ "xlm": (XLMWithLMHeadModel, XLMTokenizer),
145
+ "gptj": (GPTJForCausalLM, AutoTokenizer),
146
+ "bloom": (BloomForCausalLM, BloomTokenizerFast),
147
+ "llama": (LlamaForCausalLM, LlamaTokenizer),
148
+ "opt": (OPTForCausalLM, GPT2Tokenizer),
149
+ }
150
+
151
+ # Padding text to help Transformer-XL and XLNet with short prompts as proposed by Aman Rusia
152
+ # in https://github.com/rusiaaman/XLNet-gen#methodology
153
+ # and https://medium.com/@amanrusia/xlnet-speaks-comparison-to-gpt-2-ea1a4e9ba39e
154
+ PREFIX = """In 1991, the remains of Russian Tsar Nicholas II and his family
155
+ (except for Alexei and Maria) are discovered.
156
+ The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
157
+ remainder of the story. 1883 Western Siberia,
158
+ a young Grigori Rasputin is asked by his father and a group of men to perform magic.
159
+ Rasputin has a vision and denounces one of the men as a horse thief. Although his
160
+ father initially slaps him for making such an accusation, Rasputin watches as the
161
+ man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
162
+ the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
163
+ with people, even a bishop, begging for his blessing. <eod> </s> <eos>"""
164
+
165
+
166
+ def set_seed(args):
167
+ np.random.seed(args.seed)
168
+ torch.manual_seed(args.seed)
169
+ if args.n_gpu > 0:
170
+ torch.cuda.manual_seed_all(args.seed)
171
+
172
+
173
+ #
174
+ # Functions to prepare models' input
175
+ #
176
+
177
+
178
+ def prepare_ctrl_input(args, _, tokenizer, prompt_text):
179
+ if args.temperature > 0.7:
180
+ logger.info("CTRL typically works better with lower temperatures (and lower top_k).")
181
+
182
+ encoded_prompt = tokenizer.encode(prompt_text, add_special_tokens=False)
183
+ if not any(encoded_prompt[0] == x for x in tokenizer.control_codes.values()):
184
+ logger.info("WARNING! You are not starting your generation from a control code so you won't get good results")
185
+ return prompt_text
186
+
187
+
188
+ def prepare_xlm_input(args, model, tokenizer, prompt_text):
189
+ # kwargs = {"language": None, "mask_token_id": None}
190
+
191
+ # Set the language
192
+ use_lang_emb = hasattr(model.config, "use_lang_emb") and model.config.use_lang_emb
193
+ if hasattr(model.config, "lang2id") and use_lang_emb:
194
+ available_languages = model.config.lang2id.keys()
195
+ if args.xlm_language in available_languages:
196
+ language = args.xlm_language
197
+ else:
198
+ language = None
199
+ while language not in available_languages:
200
+ language = input("Using XLM. Select language in " + str(list(available_languages)) + " >>> ")
201
+
202
+ model.config.lang_id = model.config.lang2id[language]
203
+ # kwargs["language"] = tokenizer.lang2id[language]
204
+
205
+ # TODO fix mask_token_id setup when configurations will be synchronized between models and tokenizers
206
+ # XLM masked-language modeling (MLM) models need masked token
207
+ # is_xlm_mlm = "mlm" in args.model_name_or_path
208
+ # if is_xlm_mlm:
209
+ # kwargs["mask_token_id"] = tokenizer.mask_token_id
210
+
211
+ return prompt_text
212
+
213
+
214
+ def prepare_xlnet_input(args, _, tokenizer, prompt_text):
215
+ prefix = args.prefix if args.prefix else args.padding_text if args.padding_text else PREFIX
216
+ prompt_text = prefix + prompt_text
217
+ return prompt_text
218
+
219
+
220
+ def prepare_transfoxl_input(args, _, tokenizer, prompt_text):
221
+ prefix = args.prefix if args.prefix else args.padding_text if args.padding_text else PREFIX
222
+ prompt_text = prefix + prompt_text
223
+ return prompt_text
224
+
225
+
226
+ PREPROCESSING_FUNCTIONS = {
227
+ "ctrl": prepare_ctrl_input,
228
+ "xlm": prepare_xlm_input,
229
+ "xlnet": prepare_xlnet_input,
230
+ "transfo-xl": prepare_transfoxl_input,
231
+ }
232
+
233
+
234
+ def adjust_length_to_model(length, max_sequence_length):
235
+ if length < 0 and max_sequence_length > 0:
236
+ length = max_sequence_length
237
+ elif 0 < max_sequence_length < length:
238
+ length = max_sequence_length # No generation bigger than model size
239
+ elif length < 0:
240
+ length = MAX_LENGTH # avoid infinite loop
241
+ return length
242
+
243
+
244
+ def sparse_model_config(model_config):
245
+ embedding_size = None
246
+ if hasattr(model_config, "hidden_size"):
247
+ embedding_size = model_config.hidden_size
248
+ elif hasattr(model_config, "n_embed"):
249
+ embedding_size = model_config.n_embed
250
+ elif hasattr(model_config, "n_embd"):
251
+ embedding_size = model_config.n_embd
252
+
253
+ num_head = None
254
+ if hasattr(model_config, "num_attention_heads"):
255
+ num_head = model_config.num_attention_heads
256
+ elif hasattr(model_config, "n_head"):
257
+ num_head = model_config.n_head
258
+
259
+ if embedding_size is None or num_head is None or num_head == 0:
260
+ raise ValueError("Check the model config")
261
+
262
+ num_embedding_size_per_head = int(embedding_size / num_head)
263
+ if hasattr(model_config, "n_layer"):
264
+ num_layer = model_config.n_layer
265
+ elif hasattr(model_config, "num_hidden_layers"):
266
+ num_layer = model_config.num_hidden_layers
267
+ else:
268
+ raise ValueError("Number of hidden layers couldn't be determined from the model config")
269
+
270
+ return num_layer, num_head, num_embedding_size_per_head
271
+
272
+
273
+ def generate_past_key_values(model, batch_size, seq_len):
274
+ num_block_layers, num_attention_heads, num_embedding_size_per_head = sparse_model_config(model.config)
275
+ if model.config.model_type == "bloom":
276
+ past_key_values = tuple(
277
+ (
278
+ torch.empty(int(num_attention_heads * batch_size), num_embedding_size_per_head, seq_len)
279
+ .to(model.dtype)
280
+ .to(model.device),
281
+ torch.empty(int(num_attention_heads * batch_size), seq_len, num_embedding_size_per_head)
282
+ .to(model.dtype)
283
+ .to(model.device),
284
+ )
285
+ for _ in range(num_block_layers)
286
+ )
287
+ else:
288
+ past_key_values = tuple(
289
+ (
290
+ torch.empty(batch_size, num_attention_heads, seq_len, num_embedding_size_per_head)
291
+ .to(model.dtype)
292
+ .to(model.device),
293
+ torch.empty(batch_size, num_attention_heads, seq_len, num_embedding_size_per_head)
294
+ .to(model.dtype)
295
+ .to(model.device),
296
+ )
297
+ for _ in range(num_block_layers)
298
+ )
299
+ return past_key_values
300
+
301
+
302
+ def prepare_jit_inputs(inputs, model, tokenizer):
303
+ batch_size = len(inputs)
304
+ dummy_input = tokenizer.batch_encode_plus(inputs, return_tensors="pt")
305
+ dummy_input = dummy_input.to(model.device)
306
+ if model.config.use_cache:
307
+ dummy_input["past_key_values"] = generate_past_key_values(model, batch_size, 1)
308
+ dummy_input["attention_mask"] = torch.cat(
309
+ [
310
+ torch.zeros(dummy_input["attention_mask"].shape[0], 1)
311
+ .to(dummy_input["attention_mask"].dtype)
312
+ .to(model.device),
313
+ dummy_input["attention_mask"],
314
+ ],
315
+ -1,
316
+ )
317
+ return dummy_input
318
+
319
+
320
+ class _ModelFallbackWrapper(GenerationMixin):
321
+ __slots__ = ("_optimized", "_default")
322
+
323
+ def __init__(self, optimized, default):
324
+ self._optimized = optimized
325
+ self._default = default
326
+
327
+ def __call__(self, *args, **kwargs):
328
+ if kwargs["past_key_values"] is None and self._default.config.use_cache:
329
+ kwargs["past_key_values"] = generate_past_key_values(self._default, kwargs["input_ids"].shape[0], 0)
330
+ kwargs.pop("position_ids", None)
331
+ for k in list(kwargs.keys()):
332
+ if kwargs[k] is None or isinstance(kwargs[k], bool):
333
+ kwargs.pop(k)
334
+ outputs = self._optimized(**kwargs)
335
+ lm_logits = outputs[0]
336
+ past_key_values = outputs[1]
337
+ fixed_output = CausalLMOutputWithPast(
338
+ loss=None,
339
+ logits=lm_logits,
340
+ past_key_values=past_key_values,
341
+ hidden_states=None,
342
+ attentions=None,
343
+ )
344
+ return fixed_output
345
+
346
+ def __getattr__(self, item):
347
+ return getattr(self._default, item)
348
+
349
+ def prepare_inputs_for_generation(
350
+ self, input_ids, past_key_values=None, inputs_embeds=None, use_cache=None, **kwargs
351
+ ):
352
+ return self._default.prepare_inputs_for_generation(
353
+ input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, **kwargs
354
+ )
355
+
356
+ def _reorder_cache(
357
+ self, past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
358
+ ) -> Tuple[Tuple[torch.Tensor]]:
359
+ """
360
+ This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
361
+ [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
362
+ beam_idx at every generation step.
363
+ """
364
+ return self._default._reorder_cache(past_key_values, beam_idx)
365
+
366
+
367
+ def main():
368
+ parser = argparse.ArgumentParser()
369
+ parser.add_argument(
370
+ "--model_type",
371
+ default=None,
372
+ type=str,
373
+ required=True,
374
+ help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
375
+ )
376
+ parser.add_argument(
377
+ "--model_name_or_path",
378
+ default=None,
379
+ type=str,
380
+ required=True,
381
+ help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
382
+ )
383
+
384
+ parser.add_argument("--prompt", type=str, default="")
385
+ parser.add_argument("--length", type=int, default=100)
386
+ parser.add_argument("--num_hidden_layers", type=int, default=None)
387
+ parser.add_argument("--stop_token", type=str, default=None, help="Token at which text generation is stopped")
388
+
389
+ parser.add_argument(
390
+ "--temperature",
391
+ type=float,
392
+ default=1.0,
393
+ help="temperature of 1.0 has no effect, lower tend toward greedy sampling",
394
+ )
395
+ parser.add_argument(
396
+ "--repetition_penalty", type=float, default=1.0, help="primarily useful for CTRL model; in that case, use 1.2"
397
+ )
398
+ parser.add_argument("--k", type=int, default=0)
399
+ parser.add_argument("--p", type=float, default=0.9)
400
+
401
+ parser.add_argument("--prefix", type=str, default="", help="Text added prior to input.")
402
+ parser.add_argument("--suffix", type=str, default="", help="Text added after the input.")
403
+ parser.add_argument("--padding_text", type=str, default="", help="Deprecated, the use of `--prefix` is preferred.")
404
+ parser.add_argument("--xlm_language", type=str, default="", help="Optional language when used with the XLM model.")
405
+
406
+ parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
407
+ parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
408
+ parser.add_argument("--stream_output", action="store_true")
409
+ parser.add_argument("--num_return_sequences", type=int, default=1, help="The number of samples to generate.")
410
+ parser.add_argument(
411
+ "--fp16",
412
+ action="store_true",
413
+ help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
414
+ )
415
+ parser.add_argument("--jit", action="store_true", help="Whether or not to use jit trace to accelerate inference")
416
+
417
+ # args = parser.parse_args()
418
+ args, unknown_args = parser.parse_known_args()
419
+
420
+ hf_parser = HfArgumentParser(UnlimiformerArguments)
421
+ unlimiformer_args, unknown_unlimiformer_args = hf_parser.parse_known_args()
422
+
423
+ if len(set(unknown_args) & set(unknown_unlimiformer_args)) > 0:
424
+ raise ValueError(f"Unknown arguments detected: {set(unknown_args) & set(unknown_unlimiformer_args)}")
425
+
426
+ args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
427
+ args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
428
+
429
+ logger.warning(f"device: {args.device}, n_gpu: {args.n_gpu}, 16-bits training: {args.fp16}")
430
+
431
+ set_seed(args)
432
+
433
+ # Initialize the model and tokenizer
434
+ try:
435
+ args.model_type = args.model_type.lower()
436
+ model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
437
+ except KeyError:
438
+ raise KeyError("the model {} you specified is not supported. You are welcome to add it and open a PR :)")
439
+
440
+ tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
441
+ if tokenizer.pad_token is None:
442
+ tokenizer.pad_token = tokenizer.eos_token
443
+ model_kwargs = {}
444
+ if args.num_hidden_layers is not None:
445
+ model_kwargs["num_hidden_layers"] = args.num_hidden_layers
446
+ model = model_class.from_pretrained(args.model_name_or_path, **model_kwargs)
447
+
448
+ if args.fp16:
449
+ model.half()
450
+ model.to(args.device)
451
+
452
+ max_seq_length = getattr(model.config, "max_position_embeddings", 0)
453
+ args.length = adjust_length_to_model(args.length, max_sequence_length=max_seq_length)
454
+ logger.info(args)
455
+
456
+ if unlimiformer_args.test_unlimiformer:
457
+ unlimiformer_kwargs = {
458
+ 'layer_begin': unlimiformer_args.layer_begin,
459
+ 'layer_end': unlimiformer_args.layer_end,
460
+ 'unlimiformer_head_num': unlimiformer_args.unlimiformer_head_num,
461
+ 'exclude_attention': unlimiformer_args.unlimiformer_exclude,
462
+ 'chunk_overlap': unlimiformer_args.unlimiformer_chunk_overlap,
463
+ 'model_encoder_max_len': unlimiformer_args.unlimiformer_chunk_size,
464
+ 'verbose': unlimiformer_args.unlimiformer_verbose, 'tokenizer': tokenizer,
465
+ 'unlimiformer_training': unlimiformer_args.unlimiformer_training,
466
+ 'use_datastore': unlimiformer_args.use_datastore,
467
+ 'flat_index': unlimiformer_args.flat_index,
468
+ 'test_datastore': unlimiformer_args.test_datastore,
469
+ 'reconstruct_embeddings': unlimiformer_args.reconstruct_embeddings,
470
+ 'gpu_datastore': unlimiformer_args.gpu_datastore,
471
+ 'gpu_index': unlimiformer_args.gpu_index,
472
+ 'index_devices': unlimiformer_args.index_devices,
473
+ 'datastore_device': unlimiformer_args.datastore_device,
474
+ }
475
+ if unlimiformer_args.random_unlimiformer_training:
476
+ model = RandomTrainingUnlimiformer.convert_model(model, **unlimiformer_kwargs)
477
+ else:
478
+ model = Unlimiformer.convert_model(model, **unlimiformer_kwargs)
479
+
480
+ prompt_text = args.prompt if args.prompt else input("Model prompt >>> ")
481
+ # Check if prompt_text is a valid file name:
482
+ if os.path.exists(prompt_text):
483
+ with open(prompt_text, "r") as f:
484
+ prompt_text = f.read()
485
+
486
+ # Different models need different input formatting and/or extra arguments
487
+ requires_preprocessing = args.model_type in PREPROCESSING_FUNCTIONS.keys()
488
+ if requires_preprocessing:
489
+ prepare_input = PREPROCESSING_FUNCTIONS.get(args.model_type)
490
+ preprocessed_prompt_text = prepare_input(args, model, tokenizer, prompt_text)
491
+
492
+ if model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
493
+ tokenizer_kwargs = {"add_space_before_punct_symbol": True}
494
+ else:
495
+ tokenizer_kwargs = {}
496
+
497
+ encoded_prompt = tokenizer.encode(
498
+ preprocessed_prompt_text, add_special_tokens=False, return_tensors="pt", **tokenizer_kwargs
499
+ )
500
+ else:
501
+ # prefix = args.prefix if args.prefix else args.padding_text
502
+ prompt_text = f'{args.prefix}{prompt_text}{args.suffix}'
503
+ encoded_prompt = tokenizer.encode(prompt_text, add_special_tokens=False, return_tensors="pt")
504
+
505
+ if not unlimiformer_args.test_unlimiformer:
506
+ encoded_prompt = encoded_prompt[:, -2048:]
507
+ encoded_prompt = encoded_prompt.to(args.device)
508
+
509
+ if encoded_prompt.size()[-1] == 0:
510
+ input_ids = None
511
+ else:
512
+ input_ids = encoded_prompt
513
+
514
+ if args.jit:
515
+ jit_input_texts = ["enable jit"]
516
+ jit_inputs = prepare_jit_inputs(jit_input_texts, model, tokenizer)
517
+ torch._C._jit_set_texpr_fuser_enabled(False)
518
+ model.config.return_dict = False
519
+ if hasattr(model, "forward"):
520
+ sig = inspect.signature(model.forward)
521
+ else:
522
+ sig = inspect.signature(model.__call__)
523
+ jit_inputs = tuple(jit_inputs[key] for key in sig.parameters if jit_inputs.get(key, None) is not None)
524
+ traced_model = torch.jit.trace(model, jit_inputs, strict=False)
525
+ traced_model = torch.jit.freeze(traced_model.eval())
526
+ traced_model(*jit_inputs)
527
+ traced_model(*jit_inputs)
528
+
529
+ model = _ModelFallbackWrapper(traced_model, model)
530
+
531
+ model.eval()
532
+ output_sequences = model.generate(
533
+ input_ids=input_ids,
534
+ # max_length=args.length + len(encoded_prompt[0]),
535
+ max_new_tokens=args.length,
536
+ temperature=args.temperature,
537
+ top_k=args.k,
538
+ top_p=args.p,
539
+ repetition_penalty=args.repetition_penalty,
540
+ do_sample=True,
541
+ num_return_sequences=args.num_return_sequences,
542
+ streamer=TextStreamer(tokenizer, skip_prompt=True) if args.stream_output else None,
543
+ )
544
+
545
+ # Remove the batch dimension when returning multiple sequences
546
+ if len(output_sequences.shape) > 2:
547
+ output_sequences.squeeze_()
548
+
549
+ generated_sequences = []
550
+
551
+ for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
552
+ print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} (input length: {input_ids.shape[-1]}) ===")
553
+ generated_sequence = generated_sequence.tolist()
554
+ # generated_sequence = generated_sequence[len(encoded_prompt[0]):] + tokenizer.encode(' <end_of_prompt> ') + generated_sequence[:len(encoded_prompt[0])]
555
+
556
+ # Decode text
557
+ # text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
558
+ prompt_length = min(input_ids.shape[-1], model.unlimiformer.window_size()) if unlimiformer_args.test_unlimiformer else input_ids.shape[-1]
559
+ completion = tokenizer.decode(generated_sequence[prompt_length:])
560
+
561
+ # Remove all text after the stop token
562
+ # text = text[: text.find(args.stop_token) if args.stop_token else None]
563
+
564
+ # Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing
565
+ total_sequence = (
566
+ # prompt_text +
567
+ '|||' + completion
568
+ )
569
+
570
+ generated_sequences.append(total_sequence)
571
+ print(total_sequence)
572
+
573
+ return generated_sequences
574
+
575
+
576
+ if __name__ == "__main__":
577
+ main()
unlimiformer/usage.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .model import Unlimiformer
2
+ from .random_training_unlimiformer import RandomTrainingUnlimiformer
3
+
4
+ from dataclasses import dataclass, field
5
+ from typing import List, Optional
6
+
7
+
8
+ @dataclass
9
+ class UnlimiformerArguments:
10
+ """
11
+ Arguments pertaining to what data we are going to input our model for training and eval.
12
+ """
13
+ test_unlimiformer: Optional[bool] = field(
14
+ default=True,
15
+ metadata={
16
+ "help": "whether to use KNN."
17
+ },
18
+ )
19
+ unlimiformer_verbose: Optional[bool] = field(
20
+ default=False,
21
+ metadata={
22
+ "help": "whether to print KNN intermediate predictions (mostly for debugging)."
23
+ },
24
+ )
25
+ layer_begin: Optional[int] = field(
26
+ default=0,
27
+ metadata={"help": "The layer to begin applying KNN to. KNN will be applied to layers[knn_layer_begin:layer_end]. "
28
+ "By default, it will be applied to all layers: [0:None]]"},
29
+ )
30
+ layer_end: Optional[int] = field(
31
+ default=None,
32
+ metadata={"help": "The layer to end applying KNN to. KNN will be applied to layers[knn_layer_begin:layer_end]. "
33
+ "By default, it will be applied to all layers: [0:None]]"},
34
+ )
35
+ unlimiformer_chunk_overlap: Optional[float] = field(
36
+ default=0.5,
37
+ metadata={"help": "The fraction of overlap between input chunks"},
38
+ )
39
+ unlimiformer_chunk_size: Optional[int] = field(
40
+ default=None,
41
+ metadata={"help": "The size of each input chunk"},
42
+ )
43
+ unlimiformer_head_num: Optional[int] = field(
44
+ default=None,
45
+ metadata={"help": "The head to apply KNN to (if None, apply to all heads)"},
46
+ )
47
+ unlimiformer_exclude: Optional[bool] = field(
48
+ default=False,
49
+ metadata={
50
+ "help": "If True, prioritize the inputs that are **not** in the standard attention window."
51
+ },
52
+ )
53
+ random_unlimiformer_training: Optional[bool] = field(
54
+ default=False,
55
+ )
56
+ unlimiformer_training: Optional[bool] = field(
57
+ default=False,
58
+ )
59
+ use_datastore: Optional[bool] = field(default=False)
60
+ flat_index: Optional[bool] = field(default=False)
61
+ test_datastore: Optional[bool] = field(default=False)
62
+ reconstruct_embeddings: Optional[bool] = field(default=False)
63
+ gpu_datastore: Optional[bool] = field(default=True)
64
+ gpu_index: Optional[bool] = field(default=True)
65
+
66
+
67
+
68
+ # include these lines in your code somewhere before model training
69
+ def training_addin():
70
+ if unlimiformer_args.test_unlimiformer:
71
+ unlimiformer_kwargs = {
72
+ 'layer_begin': unlimiformer_args.layer_begin,
73
+ 'layer_end': unlimiformer_args.layer_end,
74
+ 'unlimiformer_head_num': unlimiformer_args.unlimiformer_head_num,
75
+ 'exclude_attention': unlimiformer_args.unlimiformer_exclude,
76
+ 'chunk_overlap': unlimiformer_args.unlimiformer_chunk_overlap,
77
+ 'model_encoder_max_len': unlimiformer_args.unlimiformer_chunk_size,
78
+ 'verbose': unlimiformer_args.unlimiformer_verbose, 'tokenizer': tokenizer,
79
+ 'unlimiformer_training': unlimiformer_args.unlimiformer_training,
80
+ 'use_datastore': unlimiformer_args.use_datastore,
81
+ 'flat_index': unlimiformer_args.flat_index,
82
+ 'test_datastore': unlimiformer_args.test_datastore,
83
+ 'reconstruct_embeddings': unlimiformer_args.reconstruct_embeddings,
84
+ 'gpu_datastore': unlimiformer_args.gpu_datastore,
85
+ 'gpu_index': unlimiformer_args.gpu_index
86
+ }
87
+ if unlimiformer_args.random_unlimiformer_training:
88
+ model = RandomTrainingUnlimiformer.convert_model(model, **unlimiformer_kwargs)
89
+ else:
90
+ model = Unlimiformer.convert_model(model, **unlimiformer_kwargs)
91
+
unlimiformer/utils/__init__.py ADDED
File without changes
unlimiformer/utils/config.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+
4
+ def handle_args_to_ignore(args: List[str]):
5
+ indices_to_remove = []
6
+ for i, arg in enumerate(args):
7
+ if "_ignore_" in arg:
8
+ indices_to_remove.append(i)
9
+ if not arg.startswith("-"):
10
+ indices_to_remove.append(i - 1)
11
+
12
+ for i in sorted(indices_to_remove, reverse=True):
13
+ del args[i]
unlimiformer/utils/custom_hf_argument_parser.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import logging
3
+ import sys
4
+ from typing import Tuple
5
+
6
+ from transformers import HfArgumentParser
7
+ from transformers.hf_argparser import DataClass
8
+
9
+
10
+ class CustomHfArgumentParser(HfArgumentParser):
11
+ def parse_dictionary_and_args(self) -> Tuple[DataClass, ...]:
12
+ """
13
+ Alternative helper method that does not use `argparse` at all, instead loading a json file and populating the
14
+ dataclass types.
15
+ """
16
+ args = []
17
+ data = {}
18
+ for i in range(1, len(sys.argv)):
19
+ if not sys.argv[i].endswith('.json'):
20
+ break
21
+
22
+ with open(sys.argv[i]) as f:
23
+ new_data = json.load(f)
24
+ conflicting_keys = set(new_data.keys()).intersection(data.keys())
25
+ if len(conflicting_keys) > 0:
26
+ raise ValueError(f'There are conflicting keys in the config files: {conflicting_keys}')
27
+ data.update(new_data)
28
+
29
+ for k, v in data.items():
30
+ # if any options were given explicitly through the CLA then they override anything defined in the config files
31
+ if f'--{k}' in sys.argv:
32
+ logging.info(f'While {k}={v} was given in a config file, a manual override was set through the CLA')
33
+ continue
34
+ args.extend(
35
+ ["--" + k, *(v if isinstance(v, list) else [str(v)])]
36
+ ) # add the file arguments first so command line args has precedence
37
+ args += sys.argv[i:]
38
+
39
+ return self.parse_args_into_dataclasses(args=args, look_for_args_file=False)
unlimiformer/utils/custom_seq2seq_trainer.py ADDED
@@ -0,0 +1,328 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import math
3
+ import os
4
+ import time
5
+ from collections import defaultdict
6
+ from typing import Any, Dict, List, Optional, Tuple, Union
7
+
8
+ import torch
9
+ from datasets import Dataset
10
+ from torch import nn
11
+ from transformers.debug_utils import DebugOption
12
+ from transformers.deepspeed import is_deepspeed_zero3_enabled
13
+ from transformers.trainer_utils import speed_metrics
14
+
15
+ from transformers.utils import logging
16
+ from transformers import Seq2SeqTrainer, is_torch_tpu_available
17
+
18
+ import gc
19
+
20
+ if is_torch_tpu_available(check_device=False):
21
+ import torch_xla.core.xla_model as xm
22
+ import torch_xla.debug.metrics as met
23
+
24
+
25
+ from utils.decoding import decode
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+
30
+ def _clean_memory():
31
+ gc.collect()
32
+ torch.cuda.empty_cache()
33
+
34
+ # This custom trainer is based on the trainer defined in https://github.com/huggingface/transformers/compare/main...eladsegal:public-transformers:scrolls
35
+ class CustomTrainer(Seq2SeqTrainer):
36
+ def __init__(
37
+ self, *args, untokenized_eval_dataset=None, data_args=None, output_dir: Optional[str] = None, **kwargs
38
+ ):
39
+ super().__init__(*args, **kwargs)
40
+ self._untokenized_eval_dataset = untokenized_eval_dataset
41
+ self._max_length = data_args.val_max_target_length
42
+ self._num_beams = data_args.num_beams
43
+ self._output_dir = output_dir
44
+ self._data_args = data_args
45
+ self.mock_predictions_to_assign_zero_metric_score = self.tokenizer.encode("TOO_MANY_INPUT_TOKENS",return_tensors="np")[0]
46
+
47
+ def prediction_step(
48
+ self,
49
+ model: nn.Module,
50
+ inputs: Dict[str, Union[torch.Tensor, Any]],
51
+ prediction_loss_only: bool,
52
+ ignore_keys: Optional[List[str]] = None,
53
+ ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
54
+ """
55
+ Perform an evaluation step on `model` using `inputs`.
56
+
57
+ Subclass and override to inject custom behavior.
58
+
59
+ Args:
60
+ model (`nn.Module`):
61
+ The model to evaluate.
62
+ inputs (`Dict[str, Union[torch.Tensor, Any]]`):
63
+ The inputs and targets of the model.
64
+
65
+ The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
66
+ argument `labels`. Check your model's documentation for all accepted arguments.
67
+ prediction_loss_only (`bool`):
68
+ Whether or not to ret`urn the loss only.
69
+
70
+ Return:
71
+ Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and
72
+ labels (each being optional).
73
+ """
74
+ if not ("labels" in inputs or 'decoder_input_ids' in inputs):
75
+ if model.training:
76
+ logger.warning('When computing loss, must give labels or decoder_input_ids. '
77
+ 'If you only perform prediction, you can safely ignore this message')
78
+ # This is an issue here because the input may be longer than the max-output length of the model,
79
+ # and if nothing was given it will shift the input and use it to compute loss (and later discard it).
80
+ # This may cause an indexing error when absolute embeddings are used (CUDA device side assert)
81
+ inputs['decoder_input_ids'] = inputs['input_ids'][:,:2].clone() # dummy outputs
82
+
83
+ if not self.args.predict_with_generate or prediction_loss_only:
84
+ return super().prediction_step(
85
+ model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
86
+ )
87
+
88
+ has_labels = "labels" in inputs
89
+ inputs = self._prepare_inputs(inputs)
90
+
91
+ # XXX: adapt synced_gpus for fairscale as well
92
+ gen_kwargs = self._gen_kwargs.copy()
93
+ gen_kwargs["max_length"] = (
94
+ gen_kwargs["max_length"] if gen_kwargs.get("max_length") is not None else self.model.config.max_length
95
+ )
96
+ gen_kwargs["num_beams"] = (
97
+ gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.model.config.num_beams
98
+ )
99
+ default_synced_gpus = True if is_deepspeed_zero3_enabled() else False
100
+ gen_kwargs["synced_gpus"] = (
101
+ gen_kwargs["synced_gpus"] if gen_kwargs.get("synced_gpus") is not None else default_synced_gpus
102
+ )
103
+
104
+ if "attention_mask" in inputs:
105
+ gen_kwargs["attention_mask"] = inputs.get("attention_mask", None)
106
+ if "global_attention_mask" in inputs:
107
+ gen_kwargs["global_attention_mask"] = inputs.get("global_attention_mask", None)
108
+
109
+ # --------------------- addition compared to the source file --------------------
110
+ if 'prefix_length' in inputs:
111
+ gen_kwargs['prefix_length'] = inputs['prefix_length']
112
+ _clean_memory()
113
+ # ------------------------------------------------------------------------------
114
+
115
+ # prepare generation inputs
116
+ # some encoder-decoder models can have varying encoder's and thus
117
+ # varying model input names
118
+ if hasattr(self.model, "encoder") and self.model.encoder.main_input_name != self.model.main_input_name:
119
+ generation_inputs = inputs[self.model.encoder.main_input_name]
120
+ else:
121
+ generation_inputs = inputs[self.model.main_input_name]
122
+
123
+ # Uri: to make sure we use cache even during mid-training evaluation, where this is disabled in general:
124
+ gen_kwargs['use_cache'] = True
125
+
126
+ generated_tokens = self.model.generate(
127
+ generation_inputs,
128
+ **gen_kwargs,
129
+ )
130
+ # --------------------- addition compared to the source file --------------------
131
+ _clean_memory()
132
+ # ------------------------------------------------------------------------------
133
+ # in case the batch is shorter than max length, the output should be padded
134
+ if generated_tokens.shape[-1] < gen_kwargs["max_length"]:
135
+ generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"])
136
+
137
+ if has_labels: # changed the order of the if's here because there is no point going through the model if there are no labels to compute the loss on..
138
+ with torch.no_grad():
139
+ with self.compute_loss_context_manager():
140
+ outputs = model(**inputs)
141
+ if self.label_smoother is not None:
142
+ loss = self.label_smoother(outputs, inputs["labels"]).mean().detach()
143
+ else:
144
+ loss = (outputs["loss"] if isinstance(outputs, dict) else outputs[0]).mean().detach()
145
+ else:
146
+ loss = None
147
+
148
+ if self.args.prediction_loss_only:
149
+ return (loss, None, None)
150
+
151
+ if has_labels:
152
+ labels = inputs["labels"]
153
+ if labels.shape[-1] < gen_kwargs["max_length"]:
154
+ labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"])
155
+ else:
156
+ labels = None
157
+
158
+ return (loss, generated_tokens, labels)
159
+
160
+ @property
161
+ def _restart_generator(self):
162
+ if getattr(self, '_is_restart_generator', False):
163
+ self._is_restart_generator = False
164
+ return True
165
+ return False
166
+
167
+ def set_restart_generator(self):
168
+ self._is_restart_generator = True
169
+
170
+ def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
171
+ sampler = super()._get_train_sampler()
172
+ try:
173
+ if self._restart_generator:
174
+ sampler.generator.manual_seed(self._initial_seed)
175
+ else:
176
+ self._initial_seed = sampler.generator.initial_seed()
177
+ except Exception as e:
178
+ logger.warning(f'Cannot save or set the seed of the generator: {e}')
179
+ return sampler
180
+
181
+ def _post_process_function(self, untokenized_eval_dataset, predictions):
182
+ id_to_prediction = {}
183
+ id_to_label_ids = defaultdict(list)
184
+
185
+ assert len(untokenized_eval_dataset) == len(self.eval_dataset)
186
+
187
+ for i, (instance, not_valid_for_eval) in enumerate(zip(untokenized_eval_dataset, self.eval_dataset["not_valid_for_eval"])):
188
+ if not_valid_for_eval:
189
+ id_to_prediction[instance["id"]] = self.mock_predictions_to_assign_zero_metric_score
190
+ else:
191
+ id_to_prediction[instance["id"]] = predictions[i]
192
+
193
+ if "outputs" in instance:
194
+ id_to_label_ids[instance["id"]] = instance["outputs"]
195
+ else:
196
+ id_to_label_ids[instance["id"]].append(instance["output"])
197
+
198
+ return id_to_prediction, id_to_label_ids
199
+
200
+ def evaluate(
201
+ self,
202
+ eval_dataset: Optional[Dataset] = None,
203
+ ignore_keys: Optional[List[str]] = None,
204
+ metric_key_prefix: str = "eval",
205
+ untokenized_eval_dataset: Optional[Dataset] = None,
206
+ **gen_kwargs
207
+ ) -> Dict[str, float]:
208
+ """
209
+ Run evaluation and returns metrics.
210
+
211
+ The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
212
+ (pass it to the init `compute_metrics` argument).
213
+
214
+ You can also subclass and override this method to inject custom behavior.
215
+
216
+ Args:
217
+ eval_dataset (`Dataset`, *optional*):
218
+ Pass a dataset if you wish to override `self.eval_dataset`. If it is an [`~datasets.Dataset`], columns
219
+ not accepted by the `model.forward()` method are automatically removed. It must implement the `__len__`
220
+ method.
221
+ ignore_keys (`List[str]`, *optional*):
222
+ A list of keys in the output of your model (if it is a dictionary) that should be ignored when
223
+ gathering predictions.
224
+ metric_key_prefix (`str`, *optional*, defaults to `"eval"`):
225
+ An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named
226
+ "eval_bleu" if the prefix is `"eval"` (default)
227
+ max_length (`int`, *optional*):
228
+ The maximum target length to use when predicting with the generate method.
229
+ num_beams (`int`, *optional*):
230
+ Number of beams for beam search that will be used when predicting with the generate method. 1 means no
231
+ beam search.
232
+ gen_kwargs:
233
+ Additional `generate` specific kwargs.
234
+
235
+ Returns:
236
+ A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The
237
+ dictionary also contains the epoch number which comes from the training state.
238
+ """
239
+
240
+ gen_kwargs = gen_kwargs.copy()
241
+ gen_kwargs["max_length"] = (
242
+ gen_kwargs["max_length"] if gen_kwargs.get("max_length") is not None else self.args.generation_max_length
243
+ )
244
+ gen_kwargs["num_beams"] = (
245
+ gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams
246
+ )
247
+ self._gen_kwargs = gen_kwargs
248
+
249
+ self._memory_tracker.start()
250
+
251
+ eval_dataloader = self.get_eval_dataloader(eval_dataset)
252
+ # ----------------------------------- Added -----------------------------------
253
+ untokenized_eval_dataset = (
254
+ self._untokenized_eval_dataset if untokenized_eval_dataset is None else untokenized_eval_dataset
255
+ )
256
+ compute_metrics = self.compute_metrics
257
+ self.compute_metrics = None
258
+ # -----------------------------------------------------------------------------
259
+
260
+ start_time = time.time()
261
+
262
+ eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
263
+ try:
264
+ output = eval_loop(
265
+ eval_dataloader,
266
+ description="Evaluation",
267
+ # No point gathering the predictions if there are no metrics, otherwise we defer to
268
+ # self.args.prediction_loss_only
269
+ prediction_loss_only=None, # MODIFIED since we need the predictions
270
+ ignore_keys=ignore_keys,
271
+ metric_key_prefix=metric_key_prefix,
272
+ )
273
+ finally:
274
+ # ----------------------------------- Added -----------------------------------
275
+ # revert the compute metrics back
276
+ self.compute_metrics = compute_metrics
277
+ # -----------------------------------------------------------------------------
278
+
279
+ # ----------------------------------- Added -----------------------------------
280
+ # compute our metrics
281
+ if output.predictions is not None:
282
+ eval_preds = self._post_process_function(untokenized_eval_dataset, output.predictions)
283
+
284
+ if self._output_dir is not None and self.is_world_process_zero():
285
+ predictions = decode(eval_preds[0], self.tokenizer, self._data_args)
286
+ output_prediction_file = os.path.join(
287
+ self._output_dir, f"generated_predictions_eval_{self.state.global_step}.json"
288
+ )
289
+ with open(output_prediction_file, "w") as writer:
290
+ json.dump(predictions, writer, indent=4)
291
+
292
+ output_labels_file = os.path.join(
293
+ self._output_dir, f"eval_labels.json"
294
+ )
295
+ if not os.path.isfile(output_labels_file):
296
+ with open(output_labels_file, "w") as writer:
297
+ json.dump(eval_preds[1], writer, indent=4)
298
+
299
+ if self.compute_metrics is not None:
300
+ output.metrics.update(self.compute_metrics(*eval_preds))
301
+
302
+ # Prefix all keys with metric_key_prefix + '_'
303
+ for key in list(output.metrics.keys()):
304
+ if not key.startswith(f"{metric_key_prefix}_"):
305
+ output.metrics[f"{metric_key_prefix}_{key}"] = output.metrics.pop(key)
306
+ # -----------------------------------------------------------------------------
307
+
308
+ total_batch_size = self.args.eval_batch_size * self.args.world_size
309
+ output.metrics.update(
310
+ speed_metrics(
311
+ metric_key_prefix,
312
+ start_time,
313
+ num_samples=output.num_samples,
314
+ num_steps=math.ceil(output.num_samples / total_batch_size),
315
+ )
316
+ )
317
+
318
+ self.log(output.metrics)
319
+
320
+ if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
321
+ # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
322
+ xm.master_print(met.metrics_report())
323
+
324
+ self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, output.metrics)
325
+
326
+ self._memory_tracker.stop_and_update_metrics(output.metrics)
327
+
328
+ return output.metrics
unlimiformer/utils/decoding.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import partial
2
+ import numpy as np
3
+
4
+
5
+ def decode(id_to_something, tokenizer=None, data_args=None):
6
+ decode_fn = None
7
+ switch_case = None
8
+ elem = next(iter(id_to_something.values()))
9
+ if isinstance(elem, str):
10
+ switch_case = -1
11
+ decode_fn = lambda text: text.strip()
12
+ elif isinstance(elem, list) and not isinstance(elem[0], int):
13
+ if isinstance(elem[0], str):
14
+ switch_case = 0
15
+ decode_fn = lambda texts: [text.strip() for text in texts]
16
+ else:
17
+ switch_case = 1
18
+ decode_fn = lambda token_ids_list: [
19
+ text.strip()
20
+ for text in partial(
21
+ tokenizer.batch_decode, skip_special_tokens=True, clean_up_tokenization_spaces=True
22
+ )(token_ids_list)
23
+ ]
24
+ else:
25
+ switch_case = 2
26
+ decode_fn = lambda token_ids: partial(
27
+ tokenizer.decode, skip_special_tokens=True, clean_up_tokenization_spaces=True
28
+ )(token_ids).strip()
29
+
30
+ id_to_text = {}
31
+ for id_, something in id_to_something.items():
32
+ if switch_case == -1 or switch_case == 0:
33
+ obj_to_decode = something
34
+ else:
35
+ if data_args is None:
36
+ data_args = {}
37
+ if not isinstance(data_args, dict):
38
+ data_args = vars(data_args)
39
+ if data_args.get("ignore_pad_token_for_loss", True):
40
+ # Replace -100 in the token_ids as we can't decode them.
41
+ if switch_case == 1:
42
+ token_ids_list = something
43
+ for i in range(len(token_ids_list)):
44
+ token_ids_list[i] = _replace_padding(token_ids_list[i], tokenizer.pad_token_id)
45
+ obj_to_decode = token_ids_list
46
+ elif switch_case == 2:
47
+ token_ids = something
48
+ token_ids = _replace_padding(token_ids, tokenizer.pad_token_id)
49
+ obj_to_decode = token_ids
50
+ else:
51
+ obj_to_decode = something
52
+
53
+ id_to_text[id_] = decode_fn(obj_to_decode)
54
+
55
+ return id_to_text
56
+
57
+
58
+ def _replace_padding(token_ids: np.array, pad_token_id):
59
+ return np.where(token_ids != -100, token_ids, pad_token_id)
unlimiformer/utils/duplicates.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def drop_duplicates_in_input(untokenized_dataset):
2
+ indices_to_keep = []
3
+ id_to_idx = {}
4
+ outputs = []
5
+ for i, (id_, output) in enumerate(zip(untokenized_dataset["id"], untokenized_dataset["output"])):
6
+ if id_ in id_to_idx:
7
+ outputs[id_to_idx[id_]].append(output)
8
+ continue
9
+ indices_to_keep.append(i)
10
+ id_to_idx[id_] = len(outputs)
11
+ outputs.append([output])
12
+ untokenized_dataset = untokenized_dataset.select(indices_to_keep).flatten_indices()
13
+ untokenized_dataset = untokenized_dataset.remove_columns("output")
14
+ untokenized_dataset = untokenized_dataset.add_column("outputs", outputs)
15
+ return untokenized_dataset
unlimiformer/utils/override_training_args.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import os
3
+ import sys
4
+
5
+ import torch.cuda
6
+ from transformers.utils import logging
7
+
8
+ sys.path.insert(0, os.getcwd())
9
+
10
+ from dataclasses import dataclass, field
11
+
12
+ from transformers.trainer_utils import IntervalStrategy
13
+ from transformers import Seq2SeqTrainingArguments
14
+
15
+ logger = logging.get_logger('swed_logger')
16
+
17
+ @dataclass
18
+ class TrainingOverridesArguments(Seq2SeqTrainingArguments):
19
+ """
20
+ To use if, it requires evaluation_strategy == IntervalStrategy.STEPS
21
+ """
22
+ eval_steps_override: float = field(default=0, metadata={"help": "a fraction, to set the the save_steps w.r.t to number of steps in "
23
+ "a single epoch. changes eval_steps. 0 to disable (default)"})
24
+ save_steps_override: float = field(default=0, metadata={"help": "a fraction, to set the the save_steps w.r.t to number of steps in "
25
+ "a single epoch. changes save_steps. must be a multiple of eval_steps"
26
+ " (or eval_steps_override if given). 0 to disable (default)"})
27
+
28
+ eval_fraction: float = field(default=1, metadata={
29
+ "help": "A float in (0,1] that corresponds to how much of the eval set to use during evaluations "
30
+ "(same subset all the time) or an integer >= 2 which amounts to the absolute number of training "
31
+ "samples to use. 1. to disable it and use the entire eval set "})
32
+
33
+ use_auth_token: bool = field(
34
+ default=False,
35
+ metadata={
36
+ "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
37
+ "with private models). If AUTH_TOKEN is set as an environment variable, would use that"
38
+ },
39
+ )
40
+
41
+ fp16_padding: bool = field(
42
+ default=False,
43
+ metadata={"help": "Whether to use padding for fp16"},
44
+ )
45
+
46
+
47
+ def __post_init__(self):
48
+ super(TrainingOverridesArguments, self).__post_init__()
49
+ if self.eval_steps_override > 0 or self.save_steps_override > 0:
50
+ if self.evaluation_strategy != IntervalStrategy.STEPS:
51
+ raise ValueError(
52
+ f"using eval/save steps override requires evaluation strategy to be {IntervalStrategy.STEPS}"
53
+ )
54
+ if self.save_steps_override == 0 or self.eval_steps_override == 0:
55
+ raise ValueError(
56
+ f"using eval/save steps override requires both overrides to be non zero"
57
+ )
58
+ diff = (self.save_steps_override / self.eval_steps_override) % 1
59
+ if min(1-diff, diff) > 1e-5: # we do it like that to support fractions modulo as well, with loss of precision
60
+ raise ValueError(
61
+ f"using eval/save steps override requires save steps override to be a multiple of eval_steps_override"
62
+ )
63
+ if self.use_auth_token and 'AUTH_TOKEN' in os.environ:
64
+ self.use_auth_token = os.getenv('AUTH_TOKEN')
65
+
66
+ @property
67
+ def effective_batch_size(self):
68
+ if not hasattr(self, '_ebs'):
69
+ n_gpu = self.n_gpu if torch.cuda.is_available() else 1 # may be on cpu
70
+ self._ebs = self.per_device_train_batch_size * self.gradient_accumulation_steps * n_gpu
71
+ logger.warning(f'Training with {self.per_device_train_batch_size} per_device_train_size, {self.n_gpu} gpus and '
72
+ f'{self.gradient_accumulation_steps} gradient accumulation steps, resulting in {self._ebs} effective batch size')
73
+ return self._ebs
74
+
75
+ def apply_overrides(self, dataset_size):
76
+ # Uri:
77
+ return
78
+
79
+ if self.eval_steps_override == 0:
80
+ return
81
+ es, ss = self.eval_steps, self.save_steps
82
+ total_steps_per_epoch = dataset_size / self.effective_batch_size # note that this may not be an integer
83
+ eval_steps = int(total_steps_per_epoch * self.eval_steps_override)
84
+ if eval_steps >= self.logging_steps:
85
+ if eval_steps % self.logging_steps != 0:
86
+ logger.warning(f'Eval steps override would result in eval every {eval_steps} steps, but it is not a '
87
+ f'multiple of logging steps ({self.logging_steps}) so changing to '
88
+ f'{eval_steps + self.logging_steps - eval_steps % self.logging_steps}')
89
+ eval_steps = eval_steps + self.logging_steps - eval_steps % self.logging_steps
90
+ elif eval_steps < self.logging_steps:
91
+ logger.warning(f'Eval steps override would result in eval every {eval_steps} steps, but it is not a '
92
+ f'multiple of logging steps ({self.logging_steps}) so changing to {self.logging_steps}')
93
+ eval_steps = self.logging_steps
94
+ self.eval_steps = eval_steps
95
+
96
+ save_steps = int(total_steps_per_epoch * self.save_steps_override)
97
+ if save_steps < eval_steps or save_steps % eval_steps != 0:
98
+ logger.warning(f'Save steps override would result in eval every {save_steps} steps, but it is not a '
99
+ f'multiple of eval steps ({eval_steps}) so changing to '
100
+ f'{save_steps + eval_steps - save_steps % self.eval_steps}')
101
+ save_steps = save_steps + eval_steps - save_steps % self.eval_steps
102
+ self.save_steps = save_steps
103
+
104
+ logger.warning(f'Using overrides with dataset of size {dataset_size} and effective batch size of '
105
+ f'{self.effective_batch_size}, moving from (eval_steps, save_steps) '
106
+ f'of {(es, ss)} to {(self.eval_steps, self.save_steps)}')
utils.py CHANGED
@@ -2,6 +2,7 @@ import re
2
  import spacy
3
  import json
4
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, AutoModel
 
5
  import streamlit as st
6
  from urllib.request import Request, urlopen, HTTPError
7
  from bs4 import BeautifulSoup
@@ -16,8 +17,29 @@ def hide_footer():
16
  st.markdown(hide_st_style, unsafe_allow_html=True)
17
 
18
  @st.cache_resource
19
- def get_seq2seq_model(model_id):
20
- return AutoModelForSeq2SeqLM.from_pretrained(model_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  @st.cache_resource
23
  def get_causal_model(model_id):
 
2
  import spacy
3
  import json
4
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, AutoModel
5
+ from unlimiformer import Unlimiformer, UnlimiformerArguments
6
  import streamlit as st
7
  from urllib.request import Request, urlopen, HTTPError
8
  from bs4 import BeautifulSoup
 
17
  st.markdown(hide_st_style, unsafe_allow_html=True)
18
 
19
  @st.cache_resource
20
+ def get_seq2seq_model(model_id, use_unlimiformer=True, _tokenizer=None):
21
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
22
+ if use_unlimiformer:
23
+ defaults = UnlimiformerArguments()
24
+ unlimiformer_kwargs = {
25
+ 'layer_begin': defaults.layer_begin,
26
+ 'layer_end': defaults.layer_end,
27
+ 'unlimiformer_head_num': defaults.unlimiformer_head_num,
28
+ 'exclude_attention': defaults.unlimiformer_exclude,
29
+ 'chunk_overlap': defaults.unlimiformer_chunk_overlap,
30
+ 'model_encoder_max_len': defaults.unlimiformer_chunk_size,
31
+ 'verbose': defaults.unlimiformer_verbose, 'tokenizer': _tokenizer,
32
+ 'unlimiformer_training': defaults.unlimiformer_training,
33
+ 'use_datastore': defaults.use_datastore,
34
+ 'flat_index': defaults.flat_index,
35
+ 'test_datastore': defaults.test_datastore,
36
+ 'reconstruct_embeddings': defaults.reconstruct_embeddings,
37
+ 'gpu_datastore': defaults.gpu_datastore,
38
+ 'gpu_index': defaults.gpu_index
39
+ }
40
+ return Unlimiformer.convert_model(model, **unlimiformer_kwargs)
41
+ else:
42
+ return model
43
 
44
  @st.cache_resource
45
  def get_causal_model(model_id):