lhzstar commited on
Commit
b55470f
·
1 Parent(s): b190683

new commits

Browse files
Files changed (3) hide show
  1. celebbot.py +2 -1
  2. run_eval.py +1 -1
  3. test.py +5 -0
celebbot.py CHANGED
@@ -12,7 +12,7 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModel
12
  import pickle
13
  import streamlit as st
14
  from sklearn.metrics.pairwise import cosine_similarity
15
- import run_tts
16
 
17
  # Build the AI
18
  class CelebBot():
@@ -55,6 +55,7 @@ class CelebBot():
55
  return True if "hey " + self.name in text.lower() else False
56
 
57
  def text_to_speech(self, autoplay=True):
 
58
  return run_tts.tts(self.text, "_".join(self.name.split(" ")), self.spacy_model, autoplay)
59
 
60
  def sentence_embeds_inference(self, texts: list):
 
12
  import pickle
13
  import streamlit as st
14
  from sklearn.metrics.pairwise import cosine_similarity
15
+
16
 
17
  # Build the AI
18
  class CelebBot():
 
55
  return True if "hey " + self.name in text.lower() else False
56
 
57
  def text_to_speech(self, autoplay=True):
58
+ import run_tts
59
  return run_tts.tts(self.text, "_".join(self.name.split(" ")), self.spacy_model, autoplay)
60
 
61
  def sentence_embeds_inference(self, texts: list):
run_eval.py CHANGED
@@ -85,7 +85,7 @@ def evaluate_system():
85
  print(f"ROUGE: {round(results['rougeL'], 2)}")
86
 
87
  bertscore = evaluate.load("bertscore")
88
- results = bertscore.compute(predictions=predictions, references=references, lang="en")
89
  print(f"F1: {round(sum(results['f1'])/len(results['f1']))}")
90
 
91
  if __name__ == "__main__":
 
85
  print(f"ROUGE: {round(results['rougeL'], 2)}")
86
 
87
  bertscore = evaluate.load("bertscore")
88
+ results = bertscore.compute(predictions=predictions, references=references, rescale_with_baseline=True, lang="en")
89
  print(f"F1: {round(sum(results['f1'])/len(results['f1']))}")
90
 
91
  if __name__ == "__main__":
test.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import evaluate
2
+
3
+ bertscore = evaluate.load("bertscore")
4
+ results = bertscore.compute(predictions=["I am from Toronto."], references=["Hey"],rescale_with_baseline=True, lang="en")
5
+ print(results)