import datetime import numpy as np import torch import torch.nn.functional as F import os import json import speech_recognition as sr import re import time import spacy from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModel import pickle import streamlit as st from sklearn.metrics.pairwise import cosine_similarity # Build the AI class CelebBot(): def __init__(self, name, QA_tokenizer, QA_model, sentTr_tokenizer, sentTr_model, spacy_model, knowledge_sents): self.name = name print("--- starting up", self.name, "---") self.text = "" self.QA_tokenizer = QA_tokenizer self.QA_model = QA_model self.sentTr_tokenizer = sentTr_tokenizer self.sentTr_model = sentTr_model self.spacy_model = spacy_model self.all_knowledge = knowledge_sents def speech_to_text(self): recognizer = sr.Recognizer() with sr.Microphone() as mic: recognizer.adjust_for_ambient_noise(mic, duration=1) # flag = input("Are you ready to record?\nProceed (Y/n)") # try: # assert flag=='Y' # except: # self.text = "" # print(f"me --> Permission denied") time.sleep(1) print("listening") audio = recognizer.listen(mic) try: self.text = recognizer.recognize_google(audio) except: self.text = "" print(f"me --> No audio recognized") def text_to_speech(self, autoplay=True): import run_tts return run_tts.tts(self.text, "_".join(self.name.split(" ")), self.spacy_model, autoplay) def sentence_embeds_inference(self, texts: list): def _mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Tokenize sentences encoded_input = self.sentTr_tokenizer(texts, padding=True, truncation=True, return_tensors='pt') encoded_input["input_ids"] = encoded_input["input_ids"] encoded_input["attention_mask"] = encoded_input["attention_mask"] # Compute token embeddings with torch.no_grad(): model_output = self.sentTr_model(**encoded_input) # Perform pooling sentence_embeddings = _mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) return sentence_embeddings def retrieve_knowledge_assertions(self): question_embeddings = self.sentence_embeds_inference([self.name + ', ' + self.text]) all_knowledge_embeddings = self.sentence_embeds_inference(self.all_knowledge) similarity = cosine_similarity(all_knowledge_embeddings.cpu(), question_embeddings.cpu()) similarity = np.reshape(similarity, (1, -1))[0] K = min(8, len(self.all_knowledge)) top_K = np.sort(np.argpartition(similarity, -K)[-K: ]) all_knowledge_assertions = np.array(self.all_knowledge)[top_K] # similarities = np.array(similarity)[top_K] print(*all_knowledge_assertions, sep='\n') return ' '.join(all_knowledge_assertions) def question_answer(self, instruction1='', knowledge=''): if self.text != "": if re.search(re.compile(rf'\b(you|your|{self.name})\b', flags=re.IGNORECASE), self.text) != None: instruction1 = f"You are a celebrity named {self.name}. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information." knowledge = self.retrieve_knowledge_assertions() else: instruction1 = f"Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information." query = f"Context: {instruction1} {knowledge}\n\nQuestion: {self.text}\n\nAnswer:" input_ids = self.QA_tokenizer(f"{query}", return_tensors="pt").input_ids outputs = self.QA_model.generate(input_ids, max_length=1024, do_sample=True, temperature=0.2, repetition_penalty=1.1) self.text = self.QA_tokenizer.decode(outputs[0], skip_special_tokens=True) # instruction2 = f'[Instruction] You are a celebrity named {self.name}. You need to answer the question based on knowledge' # query = f"{instruction2} [knowledge] {self.text} {answer} [question] {self.name}, {self.text}" # input_ids = self.QA_tokenizer(f"{query}", return_tensors="pt").input_ids # outputs = self.QA_model.generate(input_ids, max_length=1024) # self.text = self.QA_tokenizer.decode(outputs[0], skip_special_tokens=True) return self.text @staticmethod def action_time(): return f"it's {datetime.datetime.now().time().strftime('%H:%M')}" @staticmethod def save_kb(kb, filename): with open(filename, "wb") as f: pickle.dump(kb, f) @staticmethod def load_kb(filename): res = None with open(filename, "rb") as f: res = pickle.load(f) return res