from multiprocessing.pool import Pool from synthesizer import audio from functools import partial from itertools import chain, groupby from encoder import inference as encoder_infer from pathlib import Path from utils import logmmse from tqdm import tqdm import numpy as np import librosa import random def preprocess_librispeech(datasets_root: Path, out_dir: Path, n_processes: int, skip_existing: bool, hparams, datasets_name: str, subfolders: str, no_alignments=False): # Gather the input directories of LibriSpeeech dataset_root = datasets_root.joinpath(datasets_name) input_dirs = [dataset_root.joinpath(subfolder.strip()) for subfolder in subfolders.split(",")] print("\n ".join(map(str, ["Using data from:"] + input_dirs))) assert all(input_dir.exists() for input_dir in input_dirs) train_input_dirs = input_dirs[: -1] dev_input_dirs = input_dirs[-1: ] # Create the output directories for each output file type train_out_dir = out_dir.joinpath("train") train_out_dir.mkdir(exist_ok=True) train_out_dir.joinpath("mels").mkdir(exist_ok=True) train_out_dir.joinpath("audio").mkdir(exist_ok=True) # Create a metadata file train_metadata_fpath = train_out_dir.joinpath("train.txt") train_metadata_file = train_metadata_fpath.open("a" if skip_existing else "w", encoding="utf-8") dev_out_dir = out_dir.joinpath("dev") dev_out_dir.mkdir(exist_ok=True) dev_out_dir.joinpath("mels").mkdir(exist_ok=True) dev_out_dir.joinpath("audio").mkdir(exist_ok=True) # Create a metadata file dev_metadata_fpath = dev_out_dir.joinpath("dev.txt") dev_metadata_file = dev_metadata_fpath.open("a" if skip_existing else "w", encoding="utf-8") # Preprocess the train dataset train_speaker_dirs = list(chain.from_iterable(train_input_dir.glob("*") for train_input_dir in train_input_dirs)) func = partial(preprocess_speaker, out_dir=train_out_dir, skip_existing=skip_existing, hparams=hparams, no_alignments=no_alignments) job = Pool(n_processes).imap(func, train_speaker_dirs) for speaker_metadata in tqdm(job, datasets_name, len(train_speaker_dirs), unit="speakers"): for metadatum in speaker_metadata: train_metadata_file.write("|".join(str(x) for x in metadatum) + "\n") train_metadata_file.close() # Verify the contents of the metadata file with train_metadata_fpath.open("r", encoding="utf-8") as train_metadata_file: metadata = [line.split("|") for line in train_metadata_file] mel_frames = sum([int(m[4]) for m in metadata]) timesteps = sum([int(m[3]) for m in metadata]) sample_rate = hparams.sample_rate hours = (timesteps / sample_rate) / 3600 print("The train dataset consists of %d utterances, %d mel frames, %d audio timesteps (%.2f hours)." % (len(metadata), mel_frames, timesteps, hours)) print("Max input length (text chars): %d" % max(len(m[5]) for m in metadata)) print("Max mel frames length: %d" % max(int(m[4]) for m in metadata)) print("Max audio timesteps length: %d" % max(int(m[3]) for m in metadata)) # Preprocess the dev dataset dev_speaker_dirs = list(chain.from_iterable(dev_input_dir.glob("*") for dev_input_dir in dev_input_dirs)) func = partial(preprocess_speaker, out_dir=dev_out_dir, skip_existing=skip_existing, hparams=hparams, no_alignments=no_alignments) job = Pool(n_processes).imap(func, dev_speaker_dirs) for speaker_metadata in tqdm(job, datasets_name, len(dev_speaker_dirs), unit="speakers"): for metadatum in speaker_metadata: dev_metadata_file.write("|".join(str(x) for x in metadatum) + "\n") dev_metadata_file.close() # Verify the contents of the metadata file with dev_metadata_fpath.open("r", encoding="utf-8") as dev_metadata_file: metadata = [line.split("|") for line in dev_metadata_file] mel_frames = sum([int(m[4]) for m in metadata]) timesteps = sum([int(m[3]) for m in metadata]) sample_rate = hparams.sample_rate hours = (timesteps / sample_rate) / 3600 print("The dev dataset consists of %d utterances, %d mel frames, %d audio timesteps (%.2f hours)." % (len(metadata), mel_frames, timesteps, hours)) print("Max input length (text chars): %d" % max(len(m[5]) for m in metadata)) print("Max mel frames length: %d" % max(int(m[4]) for m in metadata)) print("Max audio timesteps length: %d" % max(int(m[3]) for m in metadata)) def preprocess_vctk(datasets_root: Path, out_dir: Path, n_processes: int, skip_existing: bool, hparams, datasets_name: str, subfolders: str, no_alignments=True): # TODO:Gather the input directories of VCTK dataset_root = datasets_root.joinpath(datasets_name) input_dir = dataset_root.joinpath(subfolders) print("Using data from:" + str(input_dir)) assert input_dir.exists() paths = [*input_dir.rglob("*.flac")] # train dev audio data split train_input_fpaths = [] dev_input_fpaths = [] pairs = sorted([(p.parts[-2].split('_')[0], p) for p in paths]) del paths for _, group in groupby(pairs, lambda pair: pair[0]): paths = sorted([p for _, p in group if "mic1.flac" in str(p)]) # only get mic1 flac file random.seed(0) random.shuffle(paths) n = round(len(paths) * 0.9) train_input_fpaths.extend(paths[:n]) # dev dataset has the same speakers as train dataset dev_input_fpaths.extend(paths[n:]) # Create the output directories for each output file type train_out_dir = out_dir.joinpath("train") train_out_dir.mkdir(exist_ok=True) train_out_dir.joinpath("mels").mkdir(exist_ok=True) train_out_dir.joinpath("audio").mkdir(exist_ok=True) dev_out_dir = out_dir.joinpath("dev") dev_out_dir.mkdir(exist_ok=True) dev_out_dir.joinpath("mels").mkdir(exist_ok=True) dev_out_dir.joinpath("audio").mkdir(exist_ok=True) # Preprocess the train dataset preprocess_data(train_input_fpaths, mode="train", out_dir=train_out_dir, skip_existing=skip_existing, hparams=hparams, no_alignments=no_alignments) # Preprocess the dev dataset preprocess_data(dev_input_fpaths, mode="dev", out_dir=dev_out_dir, skip_existing=skip_existing, hparams=hparams, no_alignments=no_alignments) def preprocess_speaker(speaker_dir, out_dir: Path, skip_existing: bool, hparams, no_alignments: bool): metadata = [] for book_dir in speaker_dir.glob("*"): if no_alignments: # Gather the utterance audios and texts # LibriTTS uses .wav but we will include extensions for compatibility with other datasets extensions = ["*.wav", "*.flac", "*.mp3"] for extension in extensions: wav_fpaths = book_dir.glob(extension) for wav_fpath in wav_fpaths: # Load the audio waveform wav, _ = librosa.load(str(wav_fpath), hparams.sample_rate) if hparams.rescale: wav = wav / np.abs(wav).max() * hparams.rescaling_max # Get the corresponding text # Check for .txt (for compatibility with other datasets) text_fpath = wav_fpath.with_suffix(".txt") if not text_fpath.exists(): # Check for .normalized.txt (LibriTTS) text_fpath = wav_fpath.with_suffix(".normalized.txt") assert text_fpath.exists() with text_fpath.open("r") as text_file: text = "".join([line for line in text_file]) text = text.replace("\"", "") text = text.strip() # Process the utterance metadata.append(process_utterance(wav, text, out_dir, str(wav_fpath.with_suffix("").name), skip_existing, hparams)) else: # Process alignment file (LibriSpeech support) # Gather the utterance audios and texts try: alignments_fpath = next(book_dir.glob("*.alignment.txt")) with alignments_fpath.open("r") as alignments_file: alignments = [line.rstrip().split(" ") for line in alignments_file] except StopIteration: # A few alignment files will be missing continue # Iterate over each entry in the alignments file for wav_fname, words, end_times in alignments: wav_fpath = book_dir.joinpath(wav_fname + ".flac") assert wav_fpath.exists() words = words.replace("\"", "").split(",") end_times = list(map(float, end_times.replace("\"", "").split(","))) # Process each sub-utterance wavs, texts = split_on_silences(wav_fpath, words, end_times, hparams) for i, (wav, text) in enumerate(zip(wavs, texts)): sub_basename = "%s_%02d" % (wav_fname, i) metadata.append(process_utterance(wav, text, out_dir, sub_basename, skip_existing, hparams)) return [m for m in metadata if m is not None] def preprocess_data(wav_fpaths, mode, out_dir: Path, skip_existing: bool, hparams, no_alignments: bool): assert mode in ["train", "dev"] # Create a metadata file metadata_fpath = out_dir.joinpath(f"{mode}.txt") metadata_file = metadata_fpath.open("a", encoding="utf-8") if no_alignments: for wav_fpath in tqdm(wav_fpaths, desc=mode): # Load the audio waveform wav, _ = librosa.load(str(wav_fpath), hparams.sample_rate) if hparams.rescale: wav = wav / np.abs(wav).max() * hparams.rescaling_max # Get the corresponding text # Check for .txt (for compatibility with other datasets) base_name = "_".join(wav_fpath.name.split(".")[0].split("_")[: -1]) + ".txt" text_fpath = wav_fpath.with_name(base_name) if not text_fpath.exists(): continue with text_fpath.open("r") as text_file: text = "".join([line for line in text_file]) text = text.replace("\"", "") text = text.strip() # Process the utterance metadata = process_utterance(wav, text, out_dir, str(wav_fpath.with_suffix("").name), skip_existing, hparams, trim_silence=False) if metadata is not None: metadata_file.write("|".join(str(x) for x in metadata) + "\n") metadata_file.close() # Verify the contents of the metadata file with metadata_fpath.open("r", encoding="utf-8") as metadata_file: metadata = [line.split("|") for line in metadata_file] mel_frames = sum([int(m[4]) for m in metadata]) timesteps = sum([int(m[3]) for m in metadata]) sample_rate = hparams.sample_rate hours = (timesteps / sample_rate) / 3600 print(f"The {mode} dataset consists of %d utterances, %d mel frames, %d audio timesteps (%.2f hours)." % (len(metadata), mel_frames, timesteps, hours)) print("Max input length (text chars): %d" % max(len(m[5]) for m in metadata)) print("Max mel frames length: %d" % max(int(m[4]) for m in metadata)) print("Max audio timesteps length: %d" % max(int(m[3]) for m in metadata)) def split_on_silences(wav_fpath, words, end_times, hparams): # Load the audio waveform wav, _ = librosa.load(str(wav_fpath), hparams.sample_rate) if hparams.rescale: wav = wav / np.abs(wav).max() * hparams.rescaling_max words = np.array(words) start_times = np.array([0.0] + end_times[:-1]) end_times = np.array(end_times) assert len(words) == len(end_times) == len(start_times) assert words[0] == "" and words[-1] == "" # Find pauses that are too long mask = (words == "") & (end_times - start_times >= hparams.silence_min_duration_split) mask[0] = mask[-1] = True breaks = np.where(mask)[0] # Profile the noise from the silences and perform noise reduction on the waveform silence_times = [[start_times[i], end_times[i]] for i in breaks] silence_times = (np.array(silence_times) * hparams.sample_rate).astype(np.int) noisy_wav = np.concatenate([wav[stime[0]:stime[1]] for stime in silence_times]) if len(noisy_wav) > hparams.sample_rate * 0.02: profile = logmmse.profile_noise(noisy_wav, hparams.sample_rate) wav = logmmse.denoise(wav, profile, eta=0) # Re-attach segments that are too short segments = list(zip(breaks[:-1], breaks[1:])) segment_durations = [start_times[end] - end_times[start] for start, end in segments] i = 0 while i < len(segments) and len(segments) > 1: if segment_durations[i] < hparams.utterance_min_duration: # See if the segment can be re-attached with the right or the left segment left_duration = float("inf") if i == 0 else segment_durations[i - 1] right_duration = float("inf") if i == len(segments) - 1 else segment_durations[i + 1] joined_duration = segment_durations[i] + min(left_duration, right_duration) # Do not re-attach if it causes the joined utterance to be too long if joined_duration > hparams.hop_size * hparams.max_mel_frames / hparams.sample_rate: i += 1 continue # Re-attach the segment with the neighbour of shortest duration j = i - 1 if left_duration <= right_duration else i segments[j] = (segments[j][0], segments[j + 1][1]) segment_durations[j] = joined_duration del segments[j + 1], segment_durations[j + 1] else: i += 1 # Split the utterance segment_times = [[end_times[start], start_times[end]] for start, end in segments] segment_times = (np.array(segment_times) * hparams.sample_rate).astype(np.int) wavs = [wav[segment_time[0]:segment_time[1]] for segment_time in segment_times] texts = [" ".join(words[start + 1:end]).replace(" ", " ") for start, end in segments] # # DEBUG: play the audio segments (run with -n=1) # import sounddevice as sd # if len(wavs) > 1: # print("This sentence was split in %d segments:" % len(wavs)) # else: # print("There are no silences long enough for this sentence to be split:") # for wav, text in zip(wavs, texts): # # Pad the waveform with 1 second of silence because sounddevice tends to cut them early # # when playing them. You shouldn't need to do that in your parsers. # wav = np.concatenate((wav, [0] * 16000)) # print("\t%s" % text) # sd.play(wav, 16000, blocking=True) # print("") return wavs, texts def process_utterance(wav: np.ndarray, text: str, out_dir: Path, basename: str, skip_existing: bool, hparams, trim_silence=True): ## FOR REFERENCE: # For you not to lose your head if you ever wish to change things here or implement your own # synthesizer. # - Both the audios and the mel spectrograms are saved as numpy arrays # - There is no processing done to the audios that will be saved to disk beyond volume # normalization (in split_on_silences) # - However, pre-emphasis is applied to the audios before computing the mel spectrogram. This # is why we re-apply it on the audio on the side of the vocoder. # - Librosa pads the waveform before computing the mel spectrogram. Here, the waveform is saved # without extra padding. This means that you won't have an exact relation between the length # of the wav and of the mel spectrogram. See the vocoder data loader. # Skip existing utterances if needed mel_fpath = out_dir.joinpath("mels", "mel-%s.npy" % basename) wav_fpath = out_dir.joinpath("audio", "audio-%s.npy" % basename) if skip_existing and mel_fpath.exists() and wav_fpath.exists(): return None # Trim silence wav = encoder_infer.preprocess_wav(wav, normalize=False, trim_silence=trim_silence) # Skip utterances that are too short if len(wav) < hparams.utterance_min_duration * hparams.sample_rate: return None # Compute the mel spectrogram mel_spectrogram = audio.melspectrogram(wav, hparams).astype(np.float32) mel_frames = mel_spectrogram.shape[1] # Skip utterances that are too long if mel_frames > hparams.max_mel_frames and hparams.clip_mels_length: return None # Write the spectrogram, embed and audio to disk np.save(mel_fpath, mel_spectrogram.T, allow_pickle=False) np.save(wav_fpath, wav, allow_pickle=False) # Return a tuple describing this training example return wav_fpath.name, mel_fpath.name, "embed-%s.npy" % basename, len(wav), mel_frames, text def embed_utterance(fpaths, encoder_model_fpath): if not encoder_infer.is_loaded(): encoder_infer.load_model(encoder_model_fpath) # Compute the speaker embedding of the utterance wav_fpath, embed_fpath = fpaths wav = np.load(wav_fpath) wav = encoder_infer.preprocess_wav(wav) embed = encoder_infer.embed_utterance(wav) np.save(embed_fpath, embed, allow_pickle=False) def create_embeddings(synthesizer_root: Path, encoder_model_fpath: Path, n_processes: int): # create train embeddings train_wav_dir = synthesizer_root.joinpath("train/audio") train_metadata_fpath = synthesizer_root.joinpath("train/train.txt") assert train_wav_dir.exists() and train_metadata_fpath.exists() train_embed_dir = synthesizer_root.joinpath("train/embeds") train_embed_dir.mkdir(exist_ok=True) # Gather the input wave filepath and the target output embed filepath with train_metadata_fpath.open("r") as metadata_file: metadata = [line.split("|") for line in metadata_file] fpaths = [(train_wav_dir.joinpath(m[0]), train_embed_dir.joinpath(m[2])) for m in metadata] # TODO: improve on the multiprocessing, it's terrible. Disk I/O is the bottleneck here. # Embed the utterances in separate threads func = partial(embed_utterance, encoder_model_fpath=encoder_model_fpath) job = Pool(n_processes).imap(func, fpaths) list(tqdm(job, "Embedding", len(fpaths), unit="utterances")) # create dev embeddings dev_wav_dir = synthesizer_root.joinpath("dev/audio") dev_metadata_fpath = synthesizer_root.joinpath("dev/dev.txt") assert dev_wav_dir.exists() and dev_metadata_fpath.exists() dev_embed_dir = synthesizer_root.joinpath("dev/embeds") dev_embed_dir.mkdir(exist_ok=True) # Gather the input wave filepath and the target output embed filepath with dev_metadata_fpath.open("r") as metadata_file: metadata = [line.split("|") for line in metadata_file] fpaths = [(dev_wav_dir.joinpath(m[0]), dev_embed_dir.joinpath(m[2])) for m in metadata] # TODO: improve on the multiprocessing, it's terrible. Disk I/O is the bottleneck here. # Embed the utterances in separate threads func = partial(embed_utterance, encoder_model_fpath=encoder_model_fpath) job = Pool(n_processes).imap(func, fpaths) list(tqdm(job, "Embedding", len(fpaths), unit="utterances"))