Spaces:
Running
Running
File size: 11,737 Bytes
79c6999 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
from transformers import GPT2Tokenizer, GPT2LMHeadModel, BertTokenizer
import torch
import streamlit as st
import re
from typing import List, Tuple
import spacy
import numpy as np
from dataclasses import dataclass
from nltk.tokenize import sent_tokenize, word_tokenize
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
st.set_page_config(layout="wide")
@dataclass
class LexicalUnits:
unit_type: str
text: List[str]
self_info: List[float] = None
def __add__(self, other):
assert self.unit_type == other.unit_type, 'Cannot add two different unit types'
return LexicalUnits(self.unit_type, self.text + other.text, self.self_info + other.self_info)
def __radd__(self, other):
if other == 0:
return self
return NotImplementedError()
def add_to_head(self, token, self_info):
return LexicalUnits(self.unit_type, [token] + self.text, [self_info] + self.self_info)
def add_to_tail(self, token, self_info):
return LexicalUnits(self.unit_type, self.text + [token], self.self_info + [self_info])
class SelectiveContext:
def __init__(self, model_type = 'gpt2', lang = 'en'):
self.model_type = model_type
self.lang = lang
# this means we calculate self-information sentence by sentence
self.sent_level_self_info = True
self._prepare_phrase_tokenizer()
self.sent_tokenize_pattern = r"(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s"
self.phrase_mask_token = ''
self.sent_mask_token = "<deleted>"
self._prepare_model()
def _prepare_phrase_tokenizer(self):
# we use space to tokenize sentence into phrases
# for English, we should use `spacy.load("en_core_web_sm").add_pipe('merge_noun_chunks')`
# for Chinese, use `nlp = spacy.load('zh_core_web_sm')`` directly
lang = self.lang
if lang == "en":
self.nlp = spacy.load("en_core_web_sm", disable=["ner"])
self.nlp.add_pipe('merge_noun_chunks')
elif lang == "zh":
self.nlp = spacy.load('zh_core_web_sm', disable=["ner"])
def _prepare_model(self):
if self.model_type == 'gpt2':
if self.lang == 'zh':
self.model = GPT2LMHeadModel.from_pretrained('uer/gpt2-chinese-cluecorpussmall')
self.tokenizer = BertTokenizer.from_pretrained('uer/gpt2-chinese-cluecorpussmall')
else:
self.model = GPT2LMHeadModel.from_pretrained('gpt2')
self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
self.model.to(DEVICE)
self.model.eval()
print('model loaded')
self.max_token_length = self.model.config.n_positions
self.get_self_information = self._get_self_info_via_gpt2
def get_self_information(self, text: str) -> Tuple[List[str], List[float]]:
# it takes text as input, and return a list of words and a list of self-information scores
raise NotImplementedError
def _get_self_info_via_gpt2(self, text: str) -> Tuple[List[str], List[float]]:
if self.lang == 'en':
text = f"<|endoftext|>{text}"
elif self.lang == 'zh':
text = f"[CLS]{text}"
with torch.no_grad():
encoding = self.tokenizer(text, add_special_tokens=False, return_tensors='pt')
encoding = encoding.to(DEVICE)
outputs = self.model(**encoding)
logits = outputs.logits
probs = torch.softmax(logits, dim=-1)
self_info = -torch.log(probs)
input_ids = encoding['input_ids']
input_ids_expaned = input_ids[:, 1:].unsqueeze(-1)
tokens = [self.tokenizer.decode(token_) for token_ in input_ids.squeeze().tolist()[1:]]
return tokens, self_info[:, :-1].gather(-1, input_ids_expaned).squeeze(-1).squeeze(0).tolist()
def _lexical_unit(self, sents):
if self.sent_level_self_info:
sent_self_info = []
all_noun_phrases = []
all_noun_phrases_info = []
all_tokens = []
all_token_self_info = []
for sent in sents:
print(sent)
tokens, self_info = self.get_self_information(sent)
sent_self_info.append(np.mean(self_info))
all_tokens.extend(tokens)
all_token_self_info.extend(self_info)
noun_phrases, noun_phrases_info = self._calculate_lexical_unit(tokens, self_info)
# We need to add a space before the first noun phrase for every sentence except the first one
if len(all_noun_phrases) != 0:
noun_phrases[0] = f" {noun_phrases[0]}"
all_noun_phrases.extend(noun_phrases)
all_noun_phrases_info.extend(noun_phrases_info)
return [
LexicalUnits('sent', text=sents, self_info=sent_self_info),
LexicalUnits('phrase', text=all_noun_phrases, self_info=all_noun_phrases_info),
LexicalUnits('token', text=all_tokens, self_info=all_token_self_info)
]
def _calculate_lexical_unit(self, tokens, self_info):
def _unit_info(tokens, self_info, units):
current_unit_idx = 0
current_position = 0
unit_self_info = [[] for _ in range(len(units))]
for idx, (token, info) in enumerate(zip(tokens, self_info)):
current_position += len(token)
if current_position == len(units[current_unit_idx]):
unit_self_info[current_unit_idx].append(info)
current_position = current_position - len(units[current_unit_idx])
current_unit_idx += 1
elif current_position > len(units[current_unit_idx]):
counter_ = 1
current_position = current_position - len(units[current_unit_idx])
current_unit_idx += 1
while current_position >= len(units[current_unit_idx]):
counter_ += 1
current_position = current_position - len(units[current_unit_idx])
current_unit_idx += 1
if current_unit_idx >= len(units):
break
partial_info = info/counter_
for _ in range(counter_):
unit_self_info[(current_unit_idx-1) - _].append(partial_info)
else:
if token == " ":
continue
unit_self_info[current_unit_idx].append(info)
unit_self_info_ = [np.mean(info) for info in unit_self_info]
return unit_self_info_
def _noun_phrases(sent):
noun_phrases = []
doc = self.nlp(sent)
for index, chunk in enumerate(doc):
if index == 0:
noun_phrases.append(chunk.text)
else:
noun_phrases.append(doc[index-1].whitespace_ + chunk.text)
return noun_phrases
if self.sent_level_self_info:
# in this case, the self_info is for each sentence
# we only need to calculate the self_info for each phrase
sent = ''.join(tokens)
# noun_phrases = [chunk.text for chunk in self.nlp(sent).noun_chunks]
noun_phrases = _noun_phrases(sent)
# noun_phrases[-1] = noun_phrases[-1] + ' '
noun_phrases_info = _unit_info(tokens, self_info, noun_phrases)
return noun_phrases, noun_phrases_info
def beautify_context(self, context: str) -> str:
context = re.sub(r"\s+", " ", context)
return context
def self_info_mask(self, sents: List[str], self_info: List[float], mask_level):
# mask_level: mask sentences, phrases, or tokens
sents_after_mask = []
masked_sents = []
self.ppl_threshold = np.nanpercentile(self_info, self.mask_ratio * 100)
# if title is not None:
# with open(os.path.join(self.path, title+'_prob_token.tsv'), 'w', encoding='utf-8') as f:
# for token, info in zip(tokens, self_info):
# f.write(f"{token}\t{info}\n")
# with open(os.path.join(self.path, title+'_prob_sent.tsv'), 'w', encoding='utf-8') as f:
# for sent, info in zip(sents, sent_self_info):
# f.write(f"{sent}\n{info}\n\n")
for sent, info in zip(sents, self_info):
if info < self.ppl_threshold:
masked_sents.append(sent)
sents_after_mask.append(self.mask_a_sent(sent, mask_level))
else:
sents_after_mask.append(sent)
masked_context = " ".join(sents_after_mask) if mask_level == 'sent' else "".join(sents_after_mask)
return masked_context, masked_sents
def mask_a_sent(self, sent, level):
if level == 'phrase':
return self.phrase_mask_token
elif level == 'sent':
return self.sent_mask_token
elif level == 'token':
return ''
def __call__(self, text: str, reduce_ratio: float = 0.35, reduce_level :str = 'phrase') -> List[str]:
context = self.beautify_context(text)
self.mask_ratio = reduce_ratio
sents = re.split(self.sent_tokenize_pattern, context)
sents = [sent.strip() for sent in sents if sent.strip()]
# You want the reduce happen at sentence level, phrase level, or token level?
assert reduce_level in ['sent', 'phrase', 'token'], f"reduce_level should be one of ['sent', 'phrase', 'token'], got {reduce_level}"
sent_lus, phrase_lus, token_lus = self._lexical_unit(sents)
lexical_level = {
'sent': sent_lus,
'phrase': phrase_lus,
'token': token_lus
}
# context is the reduced context, masked_sents denotes what context has been filtered out
context, masked_sents = self.self_info_mask(lexical_level[reduce_level].text, lexical_level[reduce_level].self_info, reduce_level)
return context, masked_sents
# streamlit app.py
# here we ask the user to input the text and the reduce ratio
# then we call the SelectiveContext to compress the text
st.title("Selective Context: Compress your prompt")
st.markdown("This is a demo for the **Selective Context** algorithm.")
st.markdown("Use this algorithm to **compress** your prompt, so that LLMs can deal with **2x more context**!")
st.markdown("- The algorithm filters out the content that is less informative. \n - You can also choose to filter out phrases or tokens instead of sentences. \n - Checkout the paper for details and experiments! [https://arxiv.org/abs/2304.12102](https://arxiv.org/abs/2304.12102).")
st.write("")
st.subheader("Demo")
lang = st.radio("Please choose the language: ", ('en', 'zh'))
ratio = st.radio("Please choose the compress ratio [we recommend 0.5]: ", (0.5, 0.2, 0.35, 0.65, 0.8))
reduce_level = st.radio("Please choose the reduce level: ", ('phrase', 'token', 'sent'))
text = st.text_area("Please input your text here", height=300)
@st.cache_resource()
def load_model(lang):
model = SelectiveContext(lang=lang)
return model
if st.button("Compress"):
model = load_model(lang)
context, masked_sents = model(text, reduce_ratio=ratio, reduce_level=reduce_level)
st.subheader("The compressed context is:")
st.code(context)
# st.divider()
st.subheader("The filtered out content is:")
st.write(masked_sents) |