File size: 6,205 Bytes
4968970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.agents import Tool, AgentExecutor, BaseMultiActionAgent\n",
    "from langchain import OpenAI, SerpAPIWrapper"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "def random_word(query: str) -> str:\n",
    "    print(\"\\nNow I'm doing this!\")\n",
    "    return f\"{query}, foo\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "search = SerpAPIWrapper()\n",
    "tools = [\n",
    "    Tool(\n",
    "        name = \"Search\",\n",
    "        func=search.run,\n",
    "        description=\"useful for when you need to answer questions about current events\"\n",
    "    ),\n",
    "    Tool(\n",
    "        name = \"RandomWord\",\n",
    "        func=random_word,\n",
    "        description=\"call this to get a random word.\",\n",
    "    )\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.tools import tool\n",
    "\n",
    "@tool\n",
    "def tool1(event) -> str:\n",
    "    \"\"\"这里必须添加描述,不然AssertionError: Function must have a docstring if description not provided.\"\"\"\n",
    "    return \"111\"\n",
    "\n",
    "from langchain.tools import tool\n",
    "\n",
    "@tool\n",
    "def tool2(event) -> str:\n",
    "    \"\"\"这里必须添加描述,不然AssertionError: Function must have a docstring if description not provided.\"\"\"\n",
    "    return \"222\"\n",
    "\n",
    "tools = [tool1, tool2]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import List, Tuple, Any, Union\n",
    "from langchain.schema import AgentAction, AgentFinish\n",
    "\n",
    "class FakeAgent(BaseMultiActionAgent):\n",
    "    \"\"\"Fake Custom Agent.\"\"\"\n",
    "    \n",
    "    @property\n",
    "    def input_keys(self):\n",
    "        return [\"input\"]\n",
    "    \n",
    "    def plan(\n",
    "        self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
    "    ) -> Union[List[AgentAction], AgentFinish]:\n",
    "        \"\"\"Given input, decided what to do.\n",
    "\n",
    "        Args:\n",
    "            intermediate_steps: Steps the LLM has taken to date,\n",
    "                along with observations\n",
    "            **kwargs: User inputs.\n",
    "\n",
    "        Returns:\n",
    "            Action specifying what tool to use.\n",
    "        \"\"\"\n",
    "        print(\"lizhen0\",intermediate_steps)\n",
    "        if len(intermediate_steps) == 0:\n",
    "            print(\"lizhen1\",intermediate_steps)\n",
    "            return [\n",
    "                AgentAction(tool=\"tool1\", tool_input=kwargs[\"input\"], log=\"\"),\n",
    "                AgentAction(tool=\"tool2\", tool_input=kwargs[\"input\"], log=\"\"),\n",
    "            ]\n",
    "        else:\n",
    "            for tuple in intermediate_steps:\n",
    "                print(tuple[0].tool, tuple[1])\n",
    "            return AgentFinish(return_values={\"output\": \"bar\"}, log=\"\")\n",
    "\n",
    "    async def aplan(\n",
    "        self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
    "    ) -> Union[List[AgentAction], AgentFinish]:\n",
    "        \"\"\"Given input, decided what to do.\n",
    "\n",
    "        Args:\n",
    "            intermediate_steps: Steps the LLM has taken to date,\n",
    "                along with observations\n",
    "            **kwargs: User inputs.\n",
    "\n",
    "        Returns:\n",
    "            Action specifying what tool to use.\n",
    "        \"\"\"\n",
    "        if len(intermediate_steps) == 0:\n",
    "            return [\n",
    "                AgentAction(tool=\"tool1\", tool_input=kwargs[\"input\"], log=\"\"),\n",
    "                AgentAction(tool=\"tool2\", tool_input=kwargs[\"input\"], log=\"\"),\n",
    "            ]\n",
    "        else:\n",
    "            return AgentFinish(return_values={\"output\": \"bar\"}, log=\"\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "agent = FakeAgent()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
      "lizhen0 []\n",
      "lizhen1 []\n",
      "\u001b[32;1m\u001b[1;3m\u001b[0m\u001b[36;1m\u001b[1;3m111\u001b[0m\u001b[32;1m\u001b[1;3m\u001b[0m\u001b[33;1m\u001b[1;3m222\u001b[0mlizhen0 [(AgentAction(tool='tool1', tool_input='How many people live in canada as of 2023?', log=''), '111'), (AgentAction(tool='tool2', tool_input='How many people live in canada as of 2023?', log=''), '222')]\n",
      "tool1 111\n",
      "tool2 222\n",
      "\u001b[32;1m\u001b[1;3m\u001b[0m\n",
      "\n",
      "\u001b[1m> Finished chain.\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'bar'"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "agent_executor.run(\"How many people live in canada as of 2023?\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.10"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}