File size: 3,400 Bytes
56ac16d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d674f7c
56ac16d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chat_models import ChatOpenAI\n",
    "from langchain import LLMChain\n",
    "from langchain.prompts.chat import (\n",
    "    ChatPromptTemplate,\n",
    "    SystemMessagePromptTemplate,\n",
    "    HumanMessagePromptTemplate\n",
    ")\n",
    "\n",
    "from langchain.schema import (\n",
    "    AIMessage,\n",
    "    BaseMessage,\n",
    "    ChatGeneration,\n",
    "    ChatMessage,\n",
    "    ChatResult,\n",
    "    HumanMessage,\n",
    "    SystemMessage,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "def _convert_message_to_dict(message: BaseMessage) -> dict:\n",
    "    if isinstance(message, ChatMessage):\n",
    "        message_dict = {\"role\": message.role, \"content\": message.content}\n",
    "    elif isinstance(message, HumanMessage):\n",
    "        message_dict = {\"role\": \"user\", \"content\": message.content}\n",
    "    elif isinstance(message, AIMessage):\n",
    "        message_dict = {\"role\": \"assistant\", \"content\": message.content}\n",
    "    elif isinstance(message, SystemMessage):\n",
    "        message_dict = {\"role\": \"system\", \"content\": message.content}\n",
    "    else:\n",
    "        raise ValueError(f\"Got unknown type {message}\")\n",
    "    if \"name\" in message.additional_kwargs:\n",
    "        message_dict[\"name\"] = message.additional_kwargs[\"name\"]\n",
    "    return message_dict"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[SystemMessage(content='你是一名翻译助手。把中文 翻译为 英语。', additional_kwargs={}), HumanMessage(content='我想请假', additional_kwargs={}, example=False)]\n",
      "[{'role': 'system', 'content': '你是一名翻译助手。把中文 翻译为 英语。'}, {'role': 'user', 'content': '我想请假'}]\n"
     ]
    }
   ],
   "source": [
    "\n",
    "template = \"你是一名翻译助手。把{input_language} 翻译为 {output_language}。\"\n",
    "system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n",
    "\n",
    "human_template = \"{text}\"\n",
    "human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)\n",
    "\n",
    "# 这里是使用chat请求,返回BaseMessage。\n",
    "chat_prompt_template = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])\n",
    "messages = chat_prompt_template.format_prompt(input_language=\"中文\", output_language=\"英语\", text=\"我想请假\").to_messages()\n",
    "print(messages)\n",
    "message_dicts = [_convert_message_to_dict(m) for m in messages]\n",
    "print(message_dicts)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.11"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}