File size: 7,307 Bytes
2ef1d57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open(\".inner/军事新闻.txt\") as f:\n",
    "    state_of_the_union = f.read()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<bound method Chain.dict of MapReduceDocumentsChain(memory=None, callbacks=None, callback_manager=None, verbose=False, input_key='input_documents', output_key='output_text', llm_chain=LLMChain(memory=None, callbacks=None, callback_manager=None, verbose=False, prompt=PromptTemplate(input_variables=['text'], output_parser=None, partial_variables={}, template='对以下内容进行简要总结:\\n\\n\"{text}\"\\n\\n\\n简明摘要:', template_format='f-string', validate_template=True), llm=OpenAI(cache=None, verbose=False, callbacks=None, callback_manager=None, client=<class 'openai.api_resources.completion.Completion'>, model_name='text-davinci-003', temperature=0.0, max_tokens=256, top_p=1, frequency_penalty=0, presence_penalty=0, n=1, best_of=1, model_kwargs={}, openai_api_key=None, openai_api_base=None, openai_organization=None, batch_size=20, request_timeout=None, logit_bias={}, max_retries=6, streaming=False, allowed_special=set(), disallowed_special='all'), output_key='text'), combine_document_chain=StuffDocumentsChain(memory=None, callbacks=None, callback_manager=None, verbose=False, input_key='input_documents', output_key='output_text', llm_chain=LLMChain(memory=None, callbacks=None, callback_manager=None, verbose=False, prompt=PromptTemplate(input_variables=['text'], output_parser=None, partial_variables={}, template='对以下内容进行简要总结:\\n\\n\"{text}\"\\n\\n\\n简明摘要:', template_format='f-string', validate_template=True), llm=OpenAI(cache=None, verbose=False, callbacks=None, callback_manager=None, client=<class 'openai.api_resources.completion.Completion'>, model_name='text-davinci-003', temperature=0.0, max_tokens=256, top_p=1, frequency_penalty=0, presence_penalty=0, n=1, best_of=1, model_kwargs={}, openai_api_key=None, openai_api_base=None, openai_organization=None, batch_size=20, request_timeout=None, logit_bias={}, max_retries=6, streaming=False, allowed_special=set(), disallowed_special='all'), output_key='text'), document_prompt=PromptTemplate(input_variables=['page_content'], output_parser=None, partial_variables={}, template='{page_content}', template_format='f-string', validate_template=True), document_variable_name='text', document_separator='\\n\\n'), collapse_document_chain=None, document_variable_name='text', return_intermediate_steps=False)>"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from langchain import OpenAI\n",
    "from langchain.chains.summarize import load_summarize_chain\n",
    "\n",
    "llm = OpenAI(temperature=0)\n",
    "summary_chain = load_summarize_chain(llm, chain_type=\"map_reduce\")\n",
    "summary_chain.dict"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chains import AnalyzeDocumentChain"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<bound method Chain.dict of AnalyzeDocumentChain(memory=None, callbacks=None, callback_manager=None, verbose=False, input_key='input_document', text_splitter=<langchain.text_splitter.RecursiveCharacterTextSplitter object at 0x10dfc97e0>, combine_docs_chain=MapReduceDocumentsChain(memory=None, callbacks=None, callback_manager=None, verbose=False, input_key='input_documents', output_key='output_text', llm_chain=LLMChain(memory=None, callbacks=None, callback_manager=None, verbose=False, prompt=PromptTemplate(input_variables=['text'], output_parser=None, partial_variables={}, template='对以下内容进行简要总结:\\n\\n\"{text}\"\\n\\n\\n简明摘要:', template_format='f-string', validate_template=True), llm=OpenAI(cache=None, verbose=False, callbacks=None, callback_manager=None, client=<class 'openai.api_resources.completion.Completion'>, model_name='text-davinci-003', temperature=0.0, max_tokens=256, top_p=1, frequency_penalty=0, presence_penalty=0, n=1, best_of=1, model_kwargs={}, openai_api_key=None, openai_api_base=None, openai_organization=None, batch_size=20, request_timeout=None, logit_bias={}, max_retries=6, streaming=False, allowed_special=set(), disallowed_special='all'), output_key='text'), combine_document_chain=StuffDocumentsChain(memory=None, callbacks=None, callback_manager=None, verbose=False, input_key='input_documents', output_key='output_text', llm_chain=LLMChain(memory=None, callbacks=None, callback_manager=None, verbose=False, prompt=PromptTemplate(input_variables=['text'], output_parser=None, partial_variables={}, template='对以下内容进行简要总结:\\n\\n\"{text}\"\\n\\n\\n简明摘要:', template_format='f-string', validate_template=True), llm=OpenAI(cache=None, verbose=False, callbacks=None, callback_manager=None, client=<class 'openai.api_resources.completion.Completion'>, model_name='text-davinci-003', temperature=0.0, max_tokens=256, top_p=1, frequency_penalty=0, presence_penalty=0, n=1, best_of=1, model_kwargs={}, openai_api_key=None, openai_api_base=None, openai_organization=None, batch_size=20, request_timeout=None, logit_bias={}, max_retries=6, streaming=False, allowed_special=set(), disallowed_special='all'), output_key='text'), document_prompt=PromptTemplate(input_variables=['page_content'], output_parser=None, partial_variables={}, template='{page_content}', template_format='f-string', validate_template=True), document_variable_name='text', document_separator='\\n\\n'), collapse_document_chain=None, document_variable_name='text', return_intermediate_steps=False))>"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "summarize_document_chain = AnalyzeDocumentChain(combine_docs_chain=summary_chain)\n",
    "summarize_document_chain.dict"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "' 美国陆军日前下令大部分飞行员暂停飞行,以确保飞行员安全,并审查风险批准和风险管理过程。自3月以来,已有12名士兵死于直升机坠毁事故,最近一起事故发生在4月27日,导致3名士兵死亡,另有1人受伤,原因正在调查中。'"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "summarize_document_chain.run(state_of_the_union)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.10"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}