Spaces:
Runtime error
Runtime error
远兮
commited on
Commit
·
4968970
1
Parent(s):
03b400c
add agent
Browse files- agent_chat_memory.ipynb +111 -0
- agent_csv.ipynb +185 -0
- agent_custom.ipynb +150 -0
- agent_custom_lizhen.ipynb +285 -0
- agent_multi_action.ipynb +209 -0
- agent_self_ask.ipynb +81 -0
agent_chat_memory.ipynb
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from langchain.agents import Tool\n",
|
10 |
+
"from langchain.memory import ConversationBufferMemory\n",
|
11 |
+
"from langchain.chat_models import ChatOpenAI\n",
|
12 |
+
"from langchain.utilities import SerpAPIWrapper\n",
|
13 |
+
"from langchain.agents import initialize_agent\n",
|
14 |
+
"from langchain.agents import AgentType"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": null,
|
20 |
+
"metadata": {},
|
21 |
+
"outputs": [],
|
22 |
+
"source": [
|
23 |
+
"search = SerpAPIWrapper()\n",
|
24 |
+
"tools = [\n",
|
25 |
+
" Tool(\n",
|
26 |
+
" name = \"Current Search\",\n",
|
27 |
+
" func=search.run,\n",
|
28 |
+
" description=\"useful for when you need to answer questions about current events or the current state of the world. the input to this should be a single search term.\"\n",
|
29 |
+
" ),\n",
|
30 |
+
"]"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": null,
|
36 |
+
"metadata": {},
|
37 |
+
"outputs": [],
|
38 |
+
"source": [
|
39 |
+
"memory = ConversationBufferMemory(memory_key=\"chat_history\", return_messages=True)"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"execution_count": null,
|
45 |
+
"metadata": {},
|
46 |
+
"outputs": [],
|
47 |
+
"source": [
|
48 |
+
"llm=ChatOpenAI(temperature=0)\n",
|
49 |
+
"agent_chain = initialize_agent(tools, llm, agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, memory=memory)"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": null,
|
55 |
+
"metadata": {},
|
56 |
+
"outputs": [],
|
57 |
+
"source": [
|
58 |
+
"agent_chain.run(input=\"你好,我叫李振\")"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": null,
|
64 |
+
"metadata": {},
|
65 |
+
"outputs": [],
|
66 |
+
"source": [
|
67 |
+
"agent_chain.run(input=\"今天是几号\")"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "code",
|
72 |
+
"execution_count": null,
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [],
|
75 |
+
"source": [
|
76 |
+
"agent_chain.run(input=\"回答对吗\")"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": null,
|
82 |
+
"metadata": {},
|
83 |
+
"outputs": [],
|
84 |
+
"source": [
|
85 |
+
"agent_chain.run(input=\"我叫什么\")"
|
86 |
+
]
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"metadata": {
|
90 |
+
"kernelspec": {
|
91 |
+
"display_name": "base",
|
92 |
+
"language": "python",
|
93 |
+
"name": "python3"
|
94 |
+
},
|
95 |
+
"language_info": {
|
96 |
+
"codemirror_mode": {
|
97 |
+
"name": "ipython",
|
98 |
+
"version": 3
|
99 |
+
},
|
100 |
+
"file_extension": ".py",
|
101 |
+
"mimetype": "text/x-python",
|
102 |
+
"name": "python",
|
103 |
+
"nbconvert_exporter": "python",
|
104 |
+
"pygments_lexer": "ipython3",
|
105 |
+
"version": "3.10.10"
|
106 |
+
},
|
107 |
+
"orig_nbformat": 4
|
108 |
+
},
|
109 |
+
"nbformat": 4,
|
110 |
+
"nbformat_minor": 2
|
111 |
+
}
|
agent_csv.ipynb
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 4,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from langchain.agents import create_csv_agent"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": 5,
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"from langchain.llms import OpenAI"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 6,
|
24 |
+
"metadata": {},
|
25 |
+
"outputs": [],
|
26 |
+
"source": [
|
27 |
+
"agent = create_csv_agent(OpenAI(temperature=0), '.inner/xbxb.csv', verbose=True)"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": 7,
|
33 |
+
"metadata": {},
|
34 |
+
"outputs": [
|
35 |
+
{
|
36 |
+
"name": "stdout",
|
37 |
+
"output_type": "stream",
|
38 |
+
"text": [
|
39 |
+
"\n",
|
40 |
+
"\n",
|
41 |
+
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
42 |
+
"\u001b[32;1m\u001b[1;3mThought: I need to count the rows\n",
|
43 |
+
"Action: python_repl_ast\n",
|
44 |
+
"Action Input: len(df)\u001b[0m\n",
|
45 |
+
"Observation: \u001b[36;1m\u001b[1;3m59867\u001b[0m\n",
|
46 |
+
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
|
47 |
+
"Final Answer: There are 59867 rows.\u001b[0m\n",
|
48 |
+
"\n",
|
49 |
+
"\u001b[1m> Finished chain.\u001b[0m\n"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"data": {
|
54 |
+
"text/plain": [
|
55 |
+
"'There are 59867 rows.'"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
"execution_count": 7,
|
59 |
+
"metadata": {},
|
60 |
+
"output_type": "execute_result"
|
61 |
+
}
|
62 |
+
],
|
63 |
+
"source": [
|
64 |
+
"agent.run(\"how many rows are there?\")"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": 8,
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [
|
72 |
+
{
|
73 |
+
"name": "stdout",
|
74 |
+
"output_type": "stream",
|
75 |
+
"text": [
|
76 |
+
"\n",
|
77 |
+
"\n",
|
78 |
+
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
79 |
+
"\u001b[32;1m\u001b[1;3mThought: I need to find out what values are in the domain释义 column\n",
|
80 |
+
"Action: python_repl_ast\n",
|
81 |
+
"Action Input: df['domain释义'].unique()\u001b[0m\n",
|
82 |
+
"Observation: \u001b[36;1m\u001b[1;3m[nan '歌曲点播' '天气查询' '笑话' '诗词背诵' '故事点播' '音量控制' '电量查询' '屏幕亮度' '绕口令' '十万个为什么'\n",
|
83 |
+
" '儿童聊天' '维基百科' '音量调节' '日期查询' '四则运算' '拍照' '知识库' '意图不明确' '闹钟' '休眠']\u001b[0m\n",
|
84 |
+
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n",
|
85 |
+
"Final Answer: domain释义这一列有nan '歌曲点播' '天气查询' '笑话' '诗词背诵' '故事点播' '音量控制' '电量查询' '屏幕亮度' '绕口令' '十万个为什么' '儿童聊天' '维基百科' '音量调节' '日期查询' '四则运算' '拍照' '知识库' '意图不明确' '闹钟' '休眠'\u001b[0m\n",
|
86 |
+
"\n",
|
87 |
+
"\u001b[1m> Finished chain.\u001b[0m\n"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"data": {
|
92 |
+
"text/plain": [
|
93 |
+
"\"domain释义这一列有nan '歌曲点播' '天气查询' '笑话' '诗词背诵' '故事点播' '音量控制' '电量查询' '屏幕亮度' '绕口令' '十万个为什么' '儿童聊天' '维基百科' '音量调节' '日期查询' '四则运算' '拍照' '知识库' '意图不明确' '闹钟' '休眠'\""
|
94 |
+
]
|
95 |
+
},
|
96 |
+
"execution_count": 8,
|
97 |
+
"metadata": {},
|
98 |
+
"output_type": "execute_result"
|
99 |
+
}
|
100 |
+
],
|
101 |
+
"source": [
|
102 |
+
"agent.run(\"domain释义这一列,有哪些内容\")"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": 9,
|
108 |
+
"metadata": {},
|
109 |
+
"outputs": [
|
110 |
+
{
|
111 |
+
"name": "stdout",
|
112 |
+
"output_type": "stream",
|
113 |
+
"text": [
|
114 |
+
"\n",
|
115 |
+
"\n",
|
116 |
+
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
117 |
+
"\u001b[32;1m\u001b[1;3mThought: I need to find out what type of domain释义 is most common\n",
|
118 |
+
"Action: python_repl_ast\n",
|
119 |
+
"Action Input: df['domain释义'].value_counts()\u001b[0m\n",
|
120 |
+
"Observation: \u001b[36;1m\u001b[1;3m儿童聊天 9037\n",
|
121 |
+
"意图不明确 4335\n",
|
122 |
+
"十万个为什么 3585\n",
|
123 |
+
"日期查询 2492\n",
|
124 |
+
"诗词背诵 2174\n",
|
125 |
+
"知识库 1127\n",
|
126 |
+
"天气查询 1125\n",
|
127 |
+
"四则运算 1072\n",
|
128 |
+
"维基百科 735\n",
|
129 |
+
"笑话 531\n",
|
130 |
+
"绕口令 250\n",
|
131 |
+
"故事点播 245\n",
|
132 |
+
"歌曲点播 226\n",
|
133 |
+
"闹钟 64\n",
|
134 |
+
"音量调节 58\n",
|
135 |
+
"屏幕亮度 41\n",
|
136 |
+
"电量查询 41\n",
|
137 |
+
"音量控制 41\n",
|
138 |
+
"拍照 16\n",
|
139 |
+
"休眠 5\n",
|
140 |
+
"Name: domain释义, dtype: int64\u001b[0m\n",
|
141 |
+
"Thought:\u001b[32;1m\u001b[1;3m 儿童聊天类型最多\n",
|
142 |
+
"Final Answer: 儿童聊天类型最多\u001b[0m\n",
|
143 |
+
"\n",
|
144 |
+
"\u001b[1m> Finished chain.\u001b[0m\n"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"data": {
|
149 |
+
"text/plain": [
|
150 |
+
"'儿童聊天类型最多'"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
"execution_count": 9,
|
154 |
+
"metadata": {},
|
155 |
+
"output_type": "execute_result"
|
156 |
+
}
|
157 |
+
],
|
158 |
+
"source": [
|
159 |
+
"agent.run(\"domain释义这一列,哪种类型最多\")"
|
160 |
+
]
|
161 |
+
}
|
162 |
+
],
|
163 |
+
"metadata": {
|
164 |
+
"kernelspec": {
|
165 |
+
"display_name": "base",
|
166 |
+
"language": "python",
|
167 |
+
"name": "python3"
|
168 |
+
},
|
169 |
+
"language_info": {
|
170 |
+
"codemirror_mode": {
|
171 |
+
"name": "ipython",
|
172 |
+
"version": 3
|
173 |
+
},
|
174 |
+
"file_extension": ".py",
|
175 |
+
"mimetype": "text/x-python",
|
176 |
+
"name": "python",
|
177 |
+
"nbconvert_exporter": "python",
|
178 |
+
"pygments_lexer": "ipython3",
|
179 |
+
"version": "3.10.10"
|
180 |
+
},
|
181 |
+
"orig_nbformat": 4
|
182 |
+
},
|
183 |
+
"nbformat": 4,
|
184 |
+
"nbformat_minor": 2
|
185 |
+
}
|
agent_custom.ipynb
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from langchain.agents import Tool, AgentExecutor, BaseSingleActionAgent\n",
|
10 |
+
"from langchain import OpenAI, SerpAPIWrapper"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 2,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [],
|
18 |
+
"source": [
|
19 |
+
"search = SerpAPIWrapper()\n",
|
20 |
+
"tools = [\n",
|
21 |
+
" Tool(\n",
|
22 |
+
" name = \"Search\",\n",
|
23 |
+
" func=search.run,\n",
|
24 |
+
" description=\"useful for when you need to answer questions about current events\",\n",
|
25 |
+
" return_direct=True\n",
|
26 |
+
" )\n",
|
27 |
+
"]"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": 3,
|
33 |
+
"metadata": {},
|
34 |
+
"outputs": [],
|
35 |
+
"source": [
|
36 |
+
"from typing import List, Tuple, Any, Union\n",
|
37 |
+
"from langchain.schema import AgentAction, AgentFinish\n",
|
38 |
+
"\n",
|
39 |
+
"class FakeAgent(BaseSingleActionAgent):\n",
|
40 |
+
" \"\"\"Fake Custom Agent.\"\"\"\n",
|
41 |
+
" \n",
|
42 |
+
" @property\n",
|
43 |
+
" def input_keys(self):\n",
|
44 |
+
" return [\"input\"]\n",
|
45 |
+
" \n",
|
46 |
+
" def plan(\n",
|
47 |
+
" self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
|
48 |
+
" ) -> Union[AgentAction, AgentFinish]:\n",
|
49 |
+
" \"\"\"Given input, decided what to do.\n",
|
50 |
+
"\n",
|
51 |
+
" Args:\n",
|
52 |
+
" intermediate_steps: Steps the LLM has taken to date,\n",
|
53 |
+
" along with observations\n",
|
54 |
+
" **kwargs: User inputs.\n",
|
55 |
+
"\n",
|
56 |
+
" Returns:\n",
|
57 |
+
" Action specifying what tool to use.\n",
|
58 |
+
" \"\"\"\n",
|
59 |
+
" return AgentAction(tool=\"Search\", tool_input=kwargs[\"input\"], log=\"\")\n",
|
60 |
+
"\n",
|
61 |
+
" async def aplan(\n",
|
62 |
+
" self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
|
63 |
+
" ) -> Union[AgentAction, AgentFinish]:\n",
|
64 |
+
" \"\"\"Given input, decided what to do.\n",
|
65 |
+
"\n",
|
66 |
+
" Args:\n",
|
67 |
+
" intermediate_steps: Steps the LLM has taken to date,\n",
|
68 |
+
" along with observations\n",
|
69 |
+
" **kwargs: User inputs.\n",
|
70 |
+
"\n",
|
71 |
+
" Returns:\n",
|
72 |
+
" Action specifying what tool to use.\n",
|
73 |
+
" \"\"\"\n",
|
74 |
+
" return AgentAction(tool=\"Search\", tool_input=kwargs[\"input\"], log=\"\")"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": 4,
|
80 |
+
"metadata": {},
|
81 |
+
"outputs": [],
|
82 |
+
"source": [
|
83 |
+
"agent = FakeAgent()"
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "code",
|
88 |
+
"execution_count": 5,
|
89 |
+
"metadata": {},
|
90 |
+
"outputs": [],
|
91 |
+
"source": [
|
92 |
+
"agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"execution_count": 6,
|
98 |
+
"metadata": {},
|
99 |
+
"outputs": [
|
100 |
+
{
|
101 |
+
"name": "stdout",
|
102 |
+
"output_type": "stream",
|
103 |
+
"text": [
|
104 |
+
"\n",
|
105 |
+
"\n",
|
106 |
+
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
107 |
+
"\u001b[32;1m\u001b[1;3m\u001b[0m\u001b[36;1m\u001b[1;3mThe current population of Canada is 38,680,894 as of Sunday, May 7, 2023, based on Worldometer elaboration of the latest United Nations data.\u001b[0m\n",
|
108 |
+
"\n",
|
109 |
+
"\u001b[1m> Finished chain.\u001b[0m\n"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"data": {
|
114 |
+
"text/plain": [
|
115 |
+
"'The current population of Canada is 38,680,894 as of Sunday, May 7, 2023, based on Worldometer elaboration of the latest United Nations data.'"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
"execution_count": 6,
|
119 |
+
"metadata": {},
|
120 |
+
"output_type": "execute_result"
|
121 |
+
}
|
122 |
+
],
|
123 |
+
"source": [
|
124 |
+
"agent_executor.run(\"How many people live in canada as of 2023?\")"
|
125 |
+
]
|
126 |
+
}
|
127 |
+
],
|
128 |
+
"metadata": {
|
129 |
+
"kernelspec": {
|
130 |
+
"display_name": "base",
|
131 |
+
"language": "python",
|
132 |
+
"name": "python3"
|
133 |
+
},
|
134 |
+
"language_info": {
|
135 |
+
"codemirror_mode": {
|
136 |
+
"name": "ipython",
|
137 |
+
"version": 3
|
138 |
+
},
|
139 |
+
"file_extension": ".py",
|
140 |
+
"mimetype": "text/x-python",
|
141 |
+
"name": "python",
|
142 |
+
"nbconvert_exporter": "python",
|
143 |
+
"pygments_lexer": "ipython3",
|
144 |
+
"version": "3.10.10"
|
145 |
+
},
|
146 |
+
"orig_nbformat": 4
|
147 |
+
},
|
148 |
+
"nbformat": 4,
|
149 |
+
"nbformat_minor": 2
|
150 |
+
}
|
agent_custom_lizhen.ipynb
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 97,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"data": {
|
10 |
+
"text/plain": [
|
11 |
+
"'22222, lizhen'"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
"execution_count": 97,
|
15 |
+
"metadata": {},
|
16 |
+
"output_type": "execute_result"
|
17 |
+
}
|
18 |
+
],
|
19 |
+
"source": [
|
20 |
+
"# 测试,自定义tool,一个输入\n",
|
21 |
+
"from langchain.agents import load_tools, AgentExecutor\n",
|
22 |
+
"from langchain.agents import AgentType\n",
|
23 |
+
"from pydantic import BaseModel, Field\n",
|
24 |
+
"from langchain.tools import Tool\n",
|
25 |
+
"\n",
|
26 |
+
"class SingleInput(BaseModel):\n",
|
27 |
+
" msg: str = Field()\n",
|
28 |
+
"\n",
|
29 |
+
"def singleInputAddLizhen(msg):\n",
|
30 |
+
" return msg+\", lizhen\"\n",
|
31 |
+
"\n",
|
32 |
+
"singleTool = Tool.from_function(\n",
|
33 |
+
" name = \"SingleInput\",\n",
|
34 |
+
" func=singleInputAddLizhen,\n",
|
35 |
+
" description=\"数字相加\",\n",
|
36 |
+
" args_schema=SingleInput,\n",
|
37 |
+
" return_direct=False\n",
|
38 |
+
")\n",
|
39 |
+
"\n",
|
40 |
+
"singleTool.run(tool_input=\"22222\")"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": 98,
|
46 |
+
"metadata": {},
|
47 |
+
"outputs": [
|
48 |
+
{
|
49 |
+
"data": {
|
50 |
+
"text/plain": [
|
51 |
+
"'result=3'"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
"execution_count": 98,
|
55 |
+
"metadata": {},
|
56 |
+
"output_type": "execute_result"
|
57 |
+
}
|
58 |
+
],
|
59 |
+
"source": [
|
60 |
+
"# 测试,自定义tool,多个输入\n",
|
61 |
+
"from langchain.tools import StructuredTool\n",
|
62 |
+
"\n",
|
63 |
+
"class MultiInput(BaseModel):\n",
|
64 |
+
" a: int = Field()\n",
|
65 |
+
" b: int = Field()\n",
|
66 |
+
" \n",
|
67 |
+
"def multiInput(a, b) -> str:\n",
|
68 |
+
" return f\"result={a+b}\"\n",
|
69 |
+
"\n",
|
70 |
+
"multiTool = StructuredTool.from_function(\n",
|
71 |
+
" name = \"MultiInput\",\n",
|
72 |
+
" func=multiInput,\n",
|
73 |
+
" description=\"多个输入,数字相加\",\n",
|
74 |
+
" args_schema=MultiInput,\n",
|
75 |
+
" return_direct=True\n",
|
76 |
+
")\n",
|
77 |
+
"\n",
|
78 |
+
"multiTool.run(tool_input={\"a\":1, \"b\":2})"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": 99,
|
84 |
+
"metadata": {},
|
85 |
+
"outputs": [
|
86 |
+
{
|
87 |
+
"name": "stdout",
|
88 |
+
"output_type": "stream",
|
89 |
+
"text": [
|
90 |
+
"\n",
|
91 |
+
"\n",
|
92 |
+
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
93 |
+
"\u001b[32;1m\u001b[1;3m\u001b[0m\u001b[36;1m\u001b[1;3mresult=3\u001b[0m\n",
|
94 |
+
"\n",
|
95 |
+
"\u001b[1m> Finished chain.\u001b[0m\n"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"data": {
|
100 |
+
"text/plain": [
|
101 |
+
"'result=3'"
|
102 |
+
]
|
103 |
+
},
|
104 |
+
"execution_count": 99,
|
105 |
+
"metadata": {},
|
106 |
+
"output_type": "execute_result"
|
107 |
+
}
|
108 |
+
],
|
109 |
+
"source": [
|
110 |
+
"#自定义代理\n",
|
111 |
+
"from langchain.agents import Tool, AgentExecutor, BaseSingleActionAgent\n",
|
112 |
+
"from typing import List, Tuple, Any, Union\n",
|
113 |
+
"from langchain.schema import AgentAction, AgentFinish\n",
|
114 |
+
"\n",
|
115 |
+
"class LizhenAgent(BaseSingleActionAgent):\n",
|
116 |
+
" \"\"\"自定义代理\"\"\"\n",
|
117 |
+
" \n",
|
118 |
+
" @property\n",
|
119 |
+
" def input_keys(self):\n",
|
120 |
+
" return [\"input\"]\n",
|
121 |
+
" \n",
|
122 |
+
" def plan(\n",
|
123 |
+
" self,\n",
|
124 |
+
" intermediate_steps: List[Tuple[AgentAction, str]],\n",
|
125 |
+
" **kwargs: Any,\n",
|
126 |
+
" ) -> Union[AgentAction, AgentFinish]:\n",
|
127 |
+
" return AgentAction(tool=\"MultiInput\", tool_input=kwargs[\"input\"], log=\"\")\n",
|
128 |
+
" \n",
|
129 |
+
" def aplan(\n",
|
130 |
+
" self,\n",
|
131 |
+
" intermediate_steps: List[Tuple[AgentAction, str]],\n",
|
132 |
+
" **kwargs: Any,\n",
|
133 |
+
" ) -> Union[AgentAction, AgentFinish]:\n",
|
134 |
+
" return AgentAction(tool=\"MultiInput\", tool_input=kwargs[\"input\"], log=\"\")\n",
|
135 |
+
" \n",
|
136 |
+
"agent = LizhenAgent()\n",
|
137 |
+
"tools = [multiTool, singleTool]\n",
|
138 |
+
"agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)\n",
|
139 |
+
"agent_executor.run(input={\"a\":1, \"b\":2})"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"execution_count": 104,
|
145 |
+
"metadata": {},
|
146 |
+
"outputs": [
|
147 |
+
{
|
148 |
+
"data": {
|
149 |
+
"text/plain": [
|
150 |
+
"'BaseMultiActionAgent , run tool1'"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
"execution_count": 104,
|
154 |
+
"metadata": {},
|
155 |
+
"output_type": "execute_result"
|
156 |
+
}
|
157 |
+
],
|
158 |
+
"source": [
|
159 |
+
"from langchain.tools import tool\n",
|
160 |
+
"\n",
|
161 |
+
"@tool\n",
|
162 |
+
"def tool1(event) -> str:\n",
|
163 |
+
" \"\"\"这里必须添加描述,不然AssertionError: Function must have a docstring if description not provided.\"\"\"\n",
|
164 |
+
" return f\"BaseMultiActionAgent , {event}\"\n",
|
165 |
+
"\n",
|
166 |
+
"tool1.run(\"run tool1\")"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "code",
|
171 |
+
"execution_count": 105,
|
172 |
+
"metadata": {},
|
173 |
+
"outputs": [
|
174 |
+
{
|
175 |
+
"data": {
|
176 |
+
"text/plain": [
|
177 |
+
"'BaseMultiActionAgent , run tool2'"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
"execution_count": 105,
|
181 |
+
"metadata": {},
|
182 |
+
"output_type": "execute_result"
|
183 |
+
}
|
184 |
+
],
|
185 |
+
"source": [
|
186 |
+
"from langchain.tools import tool\n",
|
187 |
+
"\n",
|
188 |
+
"@tool\n",
|
189 |
+
"def tool2(event) -> str:\n",
|
190 |
+
" \"\"\"这里必须添加描述,不然AssertionError: Function must have a docstring if description not provided.\"\"\"\n",
|
191 |
+
" return f\"BaseMultiActionAgent , {event}\"\n",
|
192 |
+
"\n",
|
193 |
+
"tool2.run(\"run tool2\")"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"cell_type": "code",
|
198 |
+
"execution_count": 106,
|
199 |
+
"metadata": {},
|
200 |
+
"outputs": [
|
201 |
+
{
|
202 |
+
"name": "stdout",
|
203 |
+
"output_type": "stream",
|
204 |
+
"text": [
|
205 |
+
"\n",
|
206 |
+
"\n",
|
207 |
+
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
208 |
+
"\u001b[32;1m\u001b[1;3m\u001b[0mMultiInput is not a valid tool, try another one.\u001b[32;1m\u001b[1;3m\u001b[0mSingleInput is not a valid tool, try another one.\u001b[32;1m\u001b[1;3m\u001b[0m\n",
|
209 |
+
"\n",
|
210 |
+
"\u001b[1m> Finished chain.\u001b[0m\n"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"data": {
|
215 |
+
"text/plain": [
|
216 |
+
"'bar'"
|
217 |
+
]
|
218 |
+
},
|
219 |
+
"execution_count": 106,
|
220 |
+
"metadata": {},
|
221 |
+
"output_type": "execute_result"
|
222 |
+
}
|
223 |
+
],
|
224 |
+
"source": [
|
225 |
+
"#自定义代理\n",
|
226 |
+
"from langchain.agents import Tool, AgentExecutor, BaseMultiActionAgent\n",
|
227 |
+
"from typing import List, Tuple, Any, Union\n",
|
228 |
+
"from langchain.schema import AgentAction, AgentFinish\n",
|
229 |
+
"\n",
|
230 |
+
"class LizhenMultiAgent(BaseMultiActionAgent):\n",
|
231 |
+
" \"\"\"自定义代理\"\"\"\n",
|
232 |
+
" \n",
|
233 |
+
" @property\n",
|
234 |
+
" def input_keys(self):\n",
|
235 |
+
" return [\"input\"]\n",
|
236 |
+
" \n",
|
237 |
+
" def plan(\n",
|
238 |
+
" self,\n",
|
239 |
+
" intermediate_steps: List[Tuple[AgentAction, str]],\n",
|
240 |
+
" **kwargs: Any,\n",
|
241 |
+
" ) -> Union[AgentAction, AgentFinish]:\n",
|
242 |
+
" if len(intermediate_steps) == 0:\n",
|
243 |
+
" return [AgentAction(tool=\"MultiInput\", tool_input=kwargs[\"input\"], log=\"\"), AgentAction(tool=\"SingleInput\", tool_input=kwargs[\"input\"], log=\"\")]\n",
|
244 |
+
" else:\n",
|
245 |
+
" return AgentFinish(return_values={\"output\": \"bar\"}, log=\"\")\n",
|
246 |
+
" def aplan(\n",
|
247 |
+
" self,\n",
|
248 |
+
" intermediate_steps: List[Tuple[AgentAction, str]],\n",
|
249 |
+
" **kwargs: Any,\n",
|
250 |
+
" ) -> Union[AgentAction, AgentFinish]:\n",
|
251 |
+
" if len(intermediate_steps) == 0:\n",
|
252 |
+
" return [AgentAction(tool=\"MultiInput\", tool_input=kwargs[\"input\"], log=\"\"), AgentAction(tool=\"SingleInput\", tool_input=kwargs[\"input\"], log=\"\")]\n",
|
253 |
+
" else:\n",
|
254 |
+
" return AgentFinish(return_values={\"output\": \"bar\"}, log=\"\")\n",
|
255 |
+
" \n",
|
256 |
+
"multiAgent = LizhenMultiAgent()\n",
|
257 |
+
"multiTools = [tool1, tool2]\n",
|
258 |
+
"multi_agent_executor = AgentExecutor.from_agent_and_tools(agent=multiAgent, tools=multiTools, verbose=True)\n",
|
259 |
+
"multi_agent_executor.run(input={\"a\":1, \"b\":2})"
|
260 |
+
]
|
261 |
+
}
|
262 |
+
],
|
263 |
+
"metadata": {
|
264 |
+
"kernelspec": {
|
265 |
+
"display_name": "base",
|
266 |
+
"language": "python",
|
267 |
+
"name": "python3"
|
268 |
+
},
|
269 |
+
"language_info": {
|
270 |
+
"codemirror_mode": {
|
271 |
+
"name": "ipython",
|
272 |
+
"version": 3
|
273 |
+
},
|
274 |
+
"file_extension": ".py",
|
275 |
+
"mimetype": "text/x-python",
|
276 |
+
"name": "python",
|
277 |
+
"nbconvert_exporter": "python",
|
278 |
+
"pygments_lexer": "ipython3",
|
279 |
+
"version": "3.10.10"
|
280 |
+
},
|
281 |
+
"orig_nbformat": 4
|
282 |
+
},
|
283 |
+
"nbformat": 4,
|
284 |
+
"nbformat_minor": 2
|
285 |
+
}
|
agent_multi_action.ipynb
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from langchain.agents import Tool, AgentExecutor, BaseMultiActionAgent\n",
|
10 |
+
"from langchain import OpenAI, SerpAPIWrapper"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 2,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [],
|
18 |
+
"source": [
|
19 |
+
"def random_word(query: str) -> str:\n",
|
20 |
+
" print(\"\\nNow I'm doing this!\")\n",
|
21 |
+
" return f\"{query}, foo\""
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 3,
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [],
|
29 |
+
"source": [
|
30 |
+
"search = SerpAPIWrapper()\n",
|
31 |
+
"tools = [\n",
|
32 |
+
" Tool(\n",
|
33 |
+
" name = \"Search\",\n",
|
34 |
+
" func=search.run,\n",
|
35 |
+
" description=\"useful for when you need to answer questions about current events\"\n",
|
36 |
+
" ),\n",
|
37 |
+
" Tool(\n",
|
38 |
+
" name = \"RandomWord\",\n",
|
39 |
+
" func=random_word,\n",
|
40 |
+
" description=\"call this to get a random word.\",\n",
|
41 |
+
" )\n",
|
42 |
+
"]"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": 4,
|
48 |
+
"metadata": {},
|
49 |
+
"outputs": [],
|
50 |
+
"source": [
|
51 |
+
"from langchain.tools import tool\n",
|
52 |
+
"\n",
|
53 |
+
"@tool\n",
|
54 |
+
"def tool1(event) -> str:\n",
|
55 |
+
" \"\"\"这里必须添加描述,不然AssertionError: Function must have a docstring if description not provided.\"\"\"\n",
|
56 |
+
" return \"111\"\n",
|
57 |
+
"\n",
|
58 |
+
"from langchain.tools import tool\n",
|
59 |
+
"\n",
|
60 |
+
"@tool\n",
|
61 |
+
"def tool2(event) -> str:\n",
|
62 |
+
" \"\"\"这里必须添加描述,不然AssertionError: Function must have a docstring if description not provided.\"\"\"\n",
|
63 |
+
" return \"222\"\n",
|
64 |
+
"\n",
|
65 |
+
"tools = [tool1, tool2]"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": 5,
|
71 |
+
"metadata": {},
|
72 |
+
"outputs": [],
|
73 |
+
"source": [
|
74 |
+
"from typing import List, Tuple, Any, Union\n",
|
75 |
+
"from langchain.schema import AgentAction, AgentFinish\n",
|
76 |
+
"\n",
|
77 |
+
"class FakeAgent(BaseMultiActionAgent):\n",
|
78 |
+
" \"\"\"Fake Custom Agent.\"\"\"\n",
|
79 |
+
" \n",
|
80 |
+
" @property\n",
|
81 |
+
" def input_keys(self):\n",
|
82 |
+
" return [\"input\"]\n",
|
83 |
+
" \n",
|
84 |
+
" def plan(\n",
|
85 |
+
" self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
|
86 |
+
" ) -> Union[List[AgentAction], AgentFinish]:\n",
|
87 |
+
" \"\"\"Given input, decided what to do.\n",
|
88 |
+
"\n",
|
89 |
+
" Args:\n",
|
90 |
+
" intermediate_steps: Steps the LLM has taken to date,\n",
|
91 |
+
" along with observations\n",
|
92 |
+
" **kwargs: User inputs.\n",
|
93 |
+
"\n",
|
94 |
+
" Returns:\n",
|
95 |
+
" Action specifying what tool to use.\n",
|
96 |
+
" \"\"\"\n",
|
97 |
+
" print(\"lizhen0\",intermediate_steps)\n",
|
98 |
+
" if len(intermediate_steps) == 0:\n",
|
99 |
+
" print(\"lizhen1\",intermediate_steps)\n",
|
100 |
+
" return [\n",
|
101 |
+
" AgentAction(tool=\"tool1\", tool_input=kwargs[\"input\"], log=\"\"),\n",
|
102 |
+
" AgentAction(tool=\"tool2\", tool_input=kwargs[\"input\"], log=\"\"),\n",
|
103 |
+
" ]\n",
|
104 |
+
" else:\n",
|
105 |
+
" for tuple in intermediate_steps:\n",
|
106 |
+
" print(tuple[0].tool, tuple[1])\n",
|
107 |
+
" return AgentFinish(return_values={\"output\": \"bar\"}, log=\"\")\n",
|
108 |
+
"\n",
|
109 |
+
" async def aplan(\n",
|
110 |
+
" self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
|
111 |
+
" ) -> Union[List[AgentAction], AgentFinish]:\n",
|
112 |
+
" \"\"\"Given input, decided what to do.\n",
|
113 |
+
"\n",
|
114 |
+
" Args:\n",
|
115 |
+
" intermediate_steps: Steps the LLM has taken to date,\n",
|
116 |
+
" along with observations\n",
|
117 |
+
" **kwargs: User inputs.\n",
|
118 |
+
"\n",
|
119 |
+
" Returns:\n",
|
120 |
+
" Action specifying what tool to use.\n",
|
121 |
+
" \"\"\"\n",
|
122 |
+
" if len(intermediate_steps) == 0:\n",
|
123 |
+
" return [\n",
|
124 |
+
" AgentAction(tool=\"tool1\", tool_input=kwargs[\"input\"], log=\"\"),\n",
|
125 |
+
" AgentAction(tool=\"tool2\", tool_input=kwargs[\"input\"], log=\"\"),\n",
|
126 |
+
" ]\n",
|
127 |
+
" else:\n",
|
128 |
+
" return AgentFinish(return_values={\"output\": \"bar\"}, log=\"\")"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": 6,
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [],
|
136 |
+
"source": [
|
137 |
+
"agent = FakeAgent()"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "code",
|
142 |
+
"execution_count": 7,
|
143 |
+
"metadata": {},
|
144 |
+
"outputs": [],
|
145 |
+
"source": [
|
146 |
+
"agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)"
|
147 |
+
]
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"cell_type": "code",
|
151 |
+
"execution_count": 8,
|
152 |
+
"metadata": {},
|
153 |
+
"outputs": [
|
154 |
+
{
|
155 |
+
"name": "stdout",
|
156 |
+
"output_type": "stream",
|
157 |
+
"text": [
|
158 |
+
"\n",
|
159 |
+
"\n",
|
160 |
+
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
161 |
+
"lizhen0 []\n",
|
162 |
+
"lizhen1 []\n",
|
163 |
+
"\u001b[32;1m\u001b[1;3m\u001b[0m\u001b[36;1m\u001b[1;3m111\u001b[0m\u001b[32;1m\u001b[1;3m\u001b[0m\u001b[33;1m\u001b[1;3m222\u001b[0mlizhen0 [(AgentAction(tool='tool1', tool_input='How many people live in canada as of 2023?', log=''), '111'), (AgentAction(tool='tool2', tool_input='How many people live in canada as of 2023?', log=''), '222')]\n",
|
164 |
+
"tool1 111\n",
|
165 |
+
"tool2 222\n",
|
166 |
+
"\u001b[32;1m\u001b[1;3m\u001b[0m\n",
|
167 |
+
"\n",
|
168 |
+
"\u001b[1m> Finished chain.\u001b[0m\n"
|
169 |
+
]
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"data": {
|
173 |
+
"text/plain": [
|
174 |
+
"'bar'"
|
175 |
+
]
|
176 |
+
},
|
177 |
+
"execution_count": 8,
|
178 |
+
"metadata": {},
|
179 |
+
"output_type": "execute_result"
|
180 |
+
}
|
181 |
+
],
|
182 |
+
"source": [
|
183 |
+
"agent_executor.run(\"How many people live in canada as of 2023?\")"
|
184 |
+
]
|
185 |
+
}
|
186 |
+
],
|
187 |
+
"metadata": {
|
188 |
+
"kernelspec": {
|
189 |
+
"display_name": "base",
|
190 |
+
"language": "python",
|
191 |
+
"name": "python3"
|
192 |
+
},
|
193 |
+
"language_info": {
|
194 |
+
"codemirror_mode": {
|
195 |
+
"name": "ipython",
|
196 |
+
"version": 3
|
197 |
+
},
|
198 |
+
"file_extension": ".py",
|
199 |
+
"mimetype": "text/x-python",
|
200 |
+
"name": "python",
|
201 |
+
"nbconvert_exporter": "python",
|
202 |
+
"pygments_lexer": "ipython3",
|
203 |
+
"version": "3.10.10"
|
204 |
+
},
|
205 |
+
"orig_nbformat": 4
|
206 |
+
},
|
207 |
+
"nbformat": 4,
|
208 |
+
"nbformat_minor": 2
|
209 |
+
}
|
agent_self_ask.ipynb
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stdout",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"\n",
|
13 |
+
"\n",
|
14 |
+
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
15 |
+
"\u001b[32;1m\u001b[1;3m Yes.\n",
|
16 |
+
"Follow up: 谁是最著名的导演?\u001b[0m\n",
|
17 |
+
"Intermediate answer: \u001b[36;1m\u001b[1;3mTOP1: 史蒂文·斯皮尔伯格于1946年12月18日生于美国俄亥俄州的辛辛那提市,犹太人血统,电影导演、bai编剧和电影制作人。 代表作品:《辛德勒的名单》、《拯救大兵瑞恩》、《侏罗纪公园》、《林肯》等。 代表作:《蝴蝶梦》、《惊魂记》、《西北偏北》等。\u001b[0m\n",
|
18 |
+
"\u001b[32;1m\u001b[1;3m\n",
|
19 |
+
"Follow up: 是男的还是女的?\u001b[0m\n",
|
20 |
+
"Intermediate answer: \u001b[36;1m\u001b[1;3mEnglish translation of 是男的还是女的- Translations, examples and discussions from LingQ.\u001b[0m\n",
|
21 |
+
"\u001b[32;1m\u001b[1;3mIs it a man or a woman?\n",
|
22 |
+
"\n",
|
23 |
+
"So the final answer is: 男\u001b[0m\n",
|
24 |
+
"\n",
|
25 |
+
"\u001b[1m> Finished chain.\u001b[0m\n"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"data": {
|
30 |
+
"text/plain": [
|
31 |
+
"'男'"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
"execution_count": 1,
|
35 |
+
"metadata": {},
|
36 |
+
"output_type": "execute_result"
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"source": [
|
40 |
+
"from langchain import OpenAI, SerpAPIWrapper\n",
|
41 |
+
"from langchain.agents import initialize_agent, Tool\n",
|
42 |
+
"from langchain.agents import AgentType\n",
|
43 |
+
"\n",
|
44 |
+
"llm = OpenAI(temperature=0)\n",
|
45 |
+
"search = SerpAPIWrapper()\n",
|
46 |
+
"tools = [\n",
|
47 |
+
" Tool(\n",
|
48 |
+
" name=\"Intermediate Answer\",\n",
|
49 |
+
" func=search.run,\n",
|
50 |
+
" description=\"useful for when you need to ask with search\"\n",
|
51 |
+
" )\n",
|
52 |
+
"]\n",
|
53 |
+
"\n",
|
54 |
+
"self_ask_with_search = initialize_agent(tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True)\n",
|
55 |
+
"self_ask_with_search.run(\"最著名导演是男的还是女的?\")"
|
56 |
+
]
|
57 |
+
}
|
58 |
+
],
|
59 |
+
"metadata": {
|
60 |
+
"kernelspec": {
|
61 |
+
"display_name": "base",
|
62 |
+
"language": "python",
|
63 |
+
"name": "python3"
|
64 |
+
},
|
65 |
+
"language_info": {
|
66 |
+
"codemirror_mode": {
|
67 |
+
"name": "ipython",
|
68 |
+
"version": 3
|
69 |
+
},
|
70 |
+
"file_extension": ".py",
|
71 |
+
"mimetype": "text/x-python",
|
72 |
+
"name": "python",
|
73 |
+
"nbconvert_exporter": "python",
|
74 |
+
"pygments_lexer": "ipython3",
|
75 |
+
"version": "3.10.10"
|
76 |
+
},
|
77 |
+
"orig_nbformat": 4
|
78 |
+
},
|
79 |
+
"nbformat": 4,
|
80 |
+
"nbformat_minor": 2
|
81 |
+
}
|