{ "cells": [ { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "from langchain import OpenAI, LLMMathChain, LLMChain\n", "from langchain.prompts import PromptTemplate\n", "\n", "llm = OpenAI(temperature=0)\n", "\n", "prompt = PromptTemplate(\n", " input_variables = [\"question\"],\n", " template = \"{question}\"\n", ")\n", "llmChain = LLMChain(llm=llm, prompt=prompt)\n", "llm_math = LLMMathChain.from_llm(llm, verbose=True)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'\\n\\n2的4次方等于16'" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# llmChain.run(question=\"2的0.1次方\")\n", "llmChain.run(question=\"2的4次方\")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new LLMMathChain chain...\u001b[0m\n", "2的4次方\u001b[32;1m\u001b[1;3m\n", "```text\n", "2**4\n", "```\n", "...numexpr.evaluate(\"2**4\")...\n", "\u001b[0m\n", "Answer: \u001b[33;1m\u001b[1;3m16\u001b[0m\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "'Answer: 16'" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# llm_math.run(\"2的0.1次方\")\n", "llm_math.run(\"2的4次方\")" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.3" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }