{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from langchain import PromptTemplate, OpenAI, LLMChain\n", "template = \"\"\"Question: {question}\n", "\n", "Answer: Let's think step by step.\"\"\"\n", "prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n", "llm_chain = LLMChain(prompt=prompt, llm=OpenAI(temperature=0), verbose=True)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "llm_chain.save(\".inner/llm_chain.json\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n", "Prompt after formatting:\n", "\u001b[32;1m\u001b[1;3mQuestion: 3*(2+2)=?\n", "\n", "Answer: Let's think step by step.\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n" ] }, { "data": { "text/plain": [ "'\\n\\n3 * (2 + 2) = 3 * 4 = 12'" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from langchain.chains import load_chain\n", "chain = load_chain(\".inner/llm_chain.json\")\n", "chain.run(\"3*(2+2)=?\")" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.10" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }