{ "cells": [ { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'text': 'lizhen', 'age': '18'}\n", "lizhen lizhen\n" ] }, { "data": { "text/plain": [ "{'text': 'lizhen', 'age': '20', 'name': 'lizhen'}" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from langchain.chains import TransformChain\n", "def transform_func(inputs: dict) -> dict:\n", " print(inputs)\n", " text = inputs[\"text\"]\n", " shortened_text = text\n", " print(shortened_text , text)\n", " return {\"name\": shortened_text, \"age\":\"20\"}\n", "\n", "transform_chain = TransformChain(input_variables=[\"text\",\"age\"], output_variables=[\"name\", \"age\"], transform=transform_func)\n", "transform_chain({\"text\":\"lizhen\", \"age\":\"18\"})" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.3" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }