Spaces:
Running
on
T4
Running
on
T4
File size: 3,209 Bytes
8400add ee95e21 8400add e5327ee 3d139ce 8400add 3d139ce 8400add 3d139ce 8400add 3d139ce 8400add 3d139ce 8400add 3d139ce 8400add 3d139ce 8400add db8a6e8 8400add db8a6e8 8400add db8a6e8 8400add 3d139ce 8400add db8a6e8 8400add 3d139ce 8400add 3d139ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import os
import string
import gradio as gr
import PIL.Image
import torch
from transformers import BitsAndBytesConfig, pipeline
import re
DESCRIPTION = "# LLaVA 🌋"
model_id = "llava-hf/llava-1.5-7b-hf"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
pipe = pipeline("image-to-text", model=model_id, model_kwargs={"quantization_config": quantization_config})
def extract_response_pairs(text):
pattern = re.compile(r'(USER:.*?)ASSISTANT:(.*?)(?:$|USER:)', re.DOTALL)
matches = pattern.findall(text)
print(matches)
pairs = [(user.strip(), assistant.strip()) for user, assistant in matches]
return pairs
def postprocess_output(output: str) -> str:
if output and output[-1] not in string.punctuation:
output += "."
return output
def chat(image, text, max_length, history_chat):
prompt = " ".join(history_chat) + f"USER: <image>\n{text}\nASSISTANT:"
outputs = pipe(image, prompt=prompt,
generate_kwargs={
"max_length":max_length})
#output = postprocess_output(outputs[0]["generated_text"])
history_chat.append(outputs[0]["generated_text"])
chat_val = extract_response_pairs(" ".join(history_chat))
return chat_val, history_chat
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.Markdown("LLaVA is now available in transformers with 4-bit quantization ⚡️")
chatbot = gr.Chatbot(label="Chat", show_label=False)
gr.Markdown("Input image and text to start chatting 👇 ")
with gr.Row():
image = gr.Image(type="pil")
text_input = gr.Text(label="Chat Input", max_lines=1)
history_chat = gr.State(value=[])
with gr.Row():
clear_chat_button = gr.Button("Clear")
chat_button = gr.Button("Submit", variant="primary")
with gr.Accordion(label="Advanced settings", open=False):
max_length = gr.Slider(
label="Max Length",
minimum=1,
maximum=200,
step=1,
value=150,
)
chat_output = [
chatbot,
history_chat
]
chat_button.click(fn=chat, inputs=[image,
text_input,
max_length,
history_chat],
outputs=chat_output,
api_name="Chat",
)
chat_inputs = [
image,
text_input,
max_length,
history_chat
]
text_input.submit(
fn=chat,
inputs=chat_inputs,
outputs=chat_output
).success(
fn=lambda: "",
outputs=chat_inputs,
queue=False,
api_name=False,
)
clear_chat_button.click(
fn=lambda: ([], []),
inputs=None,
outputs=[
chatbot,
history_chat
],
queue=False,
api_name="clear",
)
image.change(
fn=lambda: ([], []),
inputs=None,
outputs=[
chatbot,
history_chat
],
queue=False,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True) |