File size: 5,274 Bytes
8400add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5327ee
 
 
 
 
 
 
 
8400add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5327ee
 
 
8400add
e5327ee
8400add
e5327ee
8400add
e5327ee
8400add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#!/usr/bin/env python

from __future__ import annotations

import os
import string

import gradio as gr
import PIL.Image
import torch
from transformers import AutoProcessor, Blip2ForConditionalGeneration
import re

DESCRIPTION = "# LLaVA 🌋"

model_id = "llava-hf/llava-1.5-7b-hf"
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16
)
pipe = pipeline("image-to-text", model=model_id, model_kwargs={"quantization_config": quantization_config})


def extract_response_pairs(text):
    pattern = re.compile(r'(USER:.*?)ASSISTANT:(.*?)(?:$|USER:)', re.DOTALL)
    matches = pattern.findall(text)

    pairs = [(user.strip(), assistant.strip()) for user, assistant in matches]

    return pairs


def postprocess_output(output: str) -> str:
    if output and output[-1] not in string.punctuation:
        output += "."
    return output



def chat(image, text, temperature, length_penalty,
         repetition_penalty, max_length, min_length, num_beams, top_p,
         history_chat):
  
  prompt = " ".join(history_chat)
  prompt = f"USER: <image>\n{text}\nASSISTANT:"
  
  outputs = pipe(image, prompt=prompt, 
                  generate_kwargs={"temperature":temperature,
                  "length_penalty":length_penalty,
                  "repetition_penalty":repetition_penalty,
                  "max_length":max_length,
                  "min_length":min_length,
                  "num_beams":num_beams,
                  "top_p":top_p})
  
  output = postprocess_output(outputs[0]["generated_text"])
  history_chat.append(output)

  chat_val =  extract_response_pairs(" ".join(history_chat))
  return chat_val, history_chat


css = """
  #mkd {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
  """
with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.Markdown("**LLaVA, one of the greatest multimodal chat models is now available in transformers with 4-bit quantization! ⚡️  **")
    gr.Markdown("**Try it in this demo 🤗 **")

    chatbot = gr.Chatbot(label="Chat", show_label=False)
    gr.Markdown("Input image and text and start chatting 👇")
    with gr.Row():
      
      image = gr.Image(type="pil")
      text_input = gr.Text(label="Chat Input", show_label=False, max_lines=3, container=False)
    
      
      
    history_chat = gr.State(value=[])
    with gr.Row():
        clear_chat_button = gr.Button("Clear")
        chat_button = gr.Button("Submit", variant="primary")
    with gr.Accordion(label="Advanced settings", open=False):
        temperature = gr.Slider(
            label="Temperature",
            info="Used with nucleus sampling.",
            minimum=0.5,
            maximum=1.0,
            step=0.1,
            value=1.0,
        )
        length_penalty = gr.Slider(
            label="Length Penalty",
            info="Set to larger for longer sequence, used with beam search.",
            minimum=-1.0,
            maximum=2.0,
            step=0.2,
            value=1.0,
        )
        repetition_penalty = gr.Slider(
            label="Repetition Penalty",
            info="Larger value prevents repetition.",
            minimum=1.0,
            maximum=5.0,
            step=0.5,
            value=1.5,
        )
        max_length = gr.Slider(
            label="Max Length",
            minimum=1,
            maximum=512,
            step=1,
            value=50,
        )
        min_length = gr.Slider(
            label="Minimum Length",
            minimum=1,
            maximum=100,
            step=1,
            value=1,
        )
        num_beams = gr.Slider(
            label="Number of Beams",
            minimum=1,
            maximum=10,
            step=1,
            value=5,
        )
        top_p = gr.Slider(
            label="Top P",
            info="Used with nucleus sampling.",
            minimum=0.5,
            maximum=1.0,
            step=0.1,
            value=0.9,
        )
    chat_output = [
        chatbot,
        history_chat
    ]
    chat_button.click(fn=chat, inputs=[image, 
            text_input,
            temperature,
            length_penalty,
            repetition_penalty,
            max_length,
            min_length,
            num_beams,
            top_p,
            history_chat],
        outputs=chat_output,
        api_name="Chat",
    )

    chat_inputs = [
        image,
        text_input,
        temperature,
        length_penalty,
        repetition_penalty,
        max_length,
        min_length,
        num_beams,
        top_p,
        history_chat
    ]
    text_input.submit(
        fn=chat,
        inputs=chat_inputs,
        outputs=chat_output
    ).success(
        fn=lambda: "",
        outputs=chat_inputs,
        queue=False,
        api_name=False,
    )
    clear_chat_button.click(
        fn=lambda: ([], []),
        inputs=None,
        outputs=[
            chatbot,
            history_chat
        ],
        queue=False,
        api_name="clear",
    )
    image.change(
        fn=lambda: ([], []),
        inputs=None,
        outputs=[
            chatbot,
            history_chat
        ],
        queue=False,
    )
    

if __name__ == "__main__":
    demo.queue(max_size=10).launch()