Spaces:
Sleeping
Sleeping
justinxzhao
commited on
Commit
·
3e0f8f8
1
Parent(s):
577870e
Added per-response plots.
Browse files- app.py +215 -49
- constants.py +10 -0
- judging_dataclasses.py +15 -0
- prompts.py +15 -0
app.py
CHANGED
@@ -7,15 +7,18 @@ import anthropic
|
|
7 |
from together import Together
|
8 |
import google.generativeai as genai
|
9 |
import time
|
10 |
-
from typing import List, Optional, Literal, Union
|
11 |
from constants import (
|
12 |
LLM_COUNCIL_MEMBERS,
|
13 |
PROVIDER_TO_AVATAR_MAP,
|
14 |
AGGREGATORS,
|
|
|
15 |
)
|
16 |
from prompts import *
|
17 |
-
from judging_dataclasses import
|
18 |
-
|
|
|
|
|
19 |
|
20 |
dotenv.load_dotenv()
|
21 |
|
@@ -40,6 +43,8 @@ openai_client = OpenAI(
|
|
40 |
# anthropic_client = anthropic.Client(api_key=ANTHROPIC_API_KEY)
|
41 |
anthropic_client = anthropic.Anthropic()
|
42 |
|
|
|
|
|
43 |
|
44 |
def anthropic_streamlit_streamer(stream):
|
45 |
"""
|
@@ -142,19 +147,43 @@ def get_llm_response_stream(model_identifier, prompt):
|
|
142 |
|
143 |
|
144 |
def get_response_key(model):
|
145 |
-
return model + "
|
146 |
|
147 |
|
148 |
def get_model_from_response_key(response_key):
|
149 |
-
return response_key.split("
|
150 |
|
151 |
|
152 |
-
def
|
153 |
-
return "
|
154 |
|
155 |
|
156 |
def get_aggregator_response_key(model):
|
157 |
-
return model + "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
|
160 |
# Streamlit form UI
|
@@ -177,12 +206,14 @@ def render_criteria_form(criteria_num):
|
|
177 |
def get_response_mapping():
|
178 |
# Inspect the session state for all the responses.
|
179 |
# This is a dictionary mapping model names to their responses.
|
180 |
-
# The aggregator response is also included in this mapping under the key "<model
|
181 |
response_mapping = {}
|
182 |
for key in st.session_state.keys():
|
183 |
-
if
|
|
|
|
|
184 |
response_mapping[get_model_from_response_key(key)] = st.session_state[key]
|
185 |
-
if key.endswith("
|
186 |
response_mapping[key] = st.session_state[key]
|
187 |
return response_mapping
|
188 |
|
@@ -210,9 +241,9 @@ def get_direct_assessment_prompt(
|
|
210 |
|
211 |
def get_default_direct_assessment_prompt(user_prompt):
|
212 |
return get_direct_assessment_prompt(
|
213 |
-
DEFAULT_DIRECT_ASSESSMENT_PROMPT,
|
214 |
user_prompt=user_prompt,
|
215 |
-
response="{
|
216 |
criteria_list=DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST,
|
217 |
options=SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
|
218 |
)
|
@@ -220,7 +251,10 @@ def get_default_direct_assessment_prompt(user_prompt):
|
|
220 |
|
221 |
def get_aggregator_prompt(aggregator_prompt, user_prompt, llms):
|
222 |
responses_from_other_llms = "\n\n".join(
|
223 |
-
[
|
|
|
|
|
|
|
224 |
)
|
225 |
return aggregator_prompt.format(
|
226 |
user_prompt=user_prompt,
|
@@ -236,6 +270,100 @@ def get_default_aggregator_prompt(user_prompt, llms):
|
|
236 |
)
|
237 |
|
238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
# Main Streamlit App
|
240 |
def main():
|
241 |
st.set_page_config(
|
@@ -291,7 +419,6 @@ def main():
|
|
291 |
selected_models = llm_council_selector()
|
292 |
st.write("Selected Models:", selected_models)
|
293 |
selected_aggregator = aggregator_selector()
|
294 |
-
# st.write("Selected Aggregator:", selected_aggregator)
|
295 |
|
296 |
# Prompt input
|
297 |
user_prompt = st.text_area("Enter your prompt:")
|
@@ -299,19 +426,26 @@ def main():
|
|
299 |
if st.button("Submit"):
|
300 |
st.write("Responses:")
|
301 |
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
# Fetching and streaming responses from each selected model
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
|
|
315 |
|
316 |
# Get the aggregator prompt.
|
317 |
aggregator_prompt = get_default_aggregator_prompt(
|
@@ -319,10 +453,12 @@ def main():
|
|
319 |
)
|
320 |
|
321 |
with st.expander("Aggregator Prompt"):
|
322 |
-
st.
|
323 |
|
324 |
# Fetching and streaming response from the aggregator
|
325 |
-
st.write(
|
|
|
|
|
326 |
with st.chat_message(
|
327 |
selected_aggregator,
|
328 |
avatar=PROVIDER_TO_AVATAR_MAP[selected_aggregator],
|
@@ -348,11 +484,12 @@ def main():
|
|
348 |
|
349 |
# Depending on the assessment type, render different forms
|
350 |
if assessment_type == "Direct Assessment":
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
|
|
356 |
|
357 |
# TODO: Add option to edit criteria list with a basic text field.
|
358 |
criteria_list = DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST
|
@@ -365,7 +502,7 @@ def main():
|
|
365 |
|
366 |
response_judging_columns = st.columns(3)
|
367 |
|
368 |
-
|
369 |
model: response_judging_columns[i % 3]
|
370 |
for i, model in enumerate(responses_for_judging.keys())
|
371 |
}
|
@@ -373,37 +510,42 @@ def main():
|
|
373 |
# Get judging responses.
|
374 |
for response_model, response in responses_for_judging.items():
|
375 |
|
376 |
-
st_column =
|
377 |
-
|
378 |
-
response_model
|
379 |
-
]
|
380 |
]
|
381 |
|
382 |
with st_column:
|
383 |
-
|
384 |
-
|
|
|
|
|
|
|
385 |
judging_prompt = get_direct_assessment_prompt(
|
386 |
-
direct_assessment_prompt,
|
387 |
-
user_prompt,
|
388 |
-
response,
|
389 |
-
criteria_list,
|
390 |
-
SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
|
391 |
)
|
392 |
|
|
|
|
|
|
|
393 |
for judging_model in selected_models:
|
394 |
-
with st.expander(
|
|
|
|
|
395 |
with st.chat_message(
|
396 |
judging_model,
|
397 |
avatar=PROVIDER_TO_AVATAR_MAP[judging_model],
|
398 |
):
|
399 |
-
st.write(f"Judge: {judging_model}")
|
400 |
message_placeholder = st.empty()
|
401 |
judging_stream = get_llm_response_stream(
|
402 |
judging_model, judging_prompt
|
403 |
)
|
404 |
if judging_stream:
|
405 |
st.session_state[
|
406 |
-
|
407 |
judging_model, response_model
|
408 |
)
|
409 |
] = message_placeholder.write_stream(
|
@@ -412,6 +554,30 @@ def main():
|
|
412 |
# When all of the judging is finished for the given response, get the actual
|
413 |
# values, parsed (use gpt-4o-mini for now) with json mode.
|
414 |
# TODO.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
|
416 |
elif assessment_type == "Pairwise Comparison":
|
417 |
pairwise_comparison_prompt = st.text_area(
|
|
|
7 |
from together import Together
|
8 |
import google.generativeai as genai
|
9 |
import time
|
10 |
+
from typing import List, Optional, Literal, Union, Dict
|
11 |
from constants import (
|
12 |
LLM_COUNCIL_MEMBERS,
|
13 |
PROVIDER_TO_AVATAR_MAP,
|
14 |
AGGREGATORS,
|
15 |
+
LLM_TO_UI_NAME_MAP,
|
16 |
)
|
17 |
from prompts import *
|
18 |
+
from judging_dataclasses import DirectAssessmentJudgingResponse
|
19 |
+
import pandas as pd
|
20 |
+
import seaborn as sns
|
21 |
+
import matplotlib.pyplot as plt
|
22 |
|
23 |
dotenv.load_dotenv()
|
24 |
|
|
|
43 |
# anthropic_client = anthropic.Client(api_key=ANTHROPIC_API_KEY)
|
44 |
anthropic_client = anthropic.Anthropic()
|
45 |
|
46 |
+
client = OpenAI()
|
47 |
+
|
48 |
|
49 |
def anthropic_streamlit_streamer(stream):
|
50 |
"""
|
|
|
147 |
|
148 |
|
149 |
def get_response_key(model):
|
150 |
+
return model + "__response"
|
151 |
|
152 |
|
153 |
def get_model_from_response_key(response_key):
|
154 |
+
return response_key.split("__")[0]
|
155 |
|
156 |
|
157 |
+
def get_direct_assessment_judging_key(judge_model, response_model):
|
158 |
+
return "direct_assessment_judge__" + judge_model + "__" + response_model
|
159 |
|
160 |
|
161 |
def get_aggregator_response_key(model):
|
162 |
+
return model + "__aggregator_response"
|
163 |
+
|
164 |
+
|
165 |
+
def create_dataframe_for_direct_assessment_judging_response(
|
166 |
+
response: DirectAssessmentJudgingResponse,
|
167 |
+
):
|
168 |
+
# Initialize empty list to collect data
|
169 |
+
data = []
|
170 |
+
|
171 |
+
# Loop through models
|
172 |
+
for judging_model in response.judging_models:
|
173 |
+
model_name = judging_model.model
|
174 |
+
# Loop through criteria_scores
|
175 |
+
for criteria_score in judging_model.criteria_scores:
|
176 |
+
data.append(
|
177 |
+
{
|
178 |
+
"llm_judge_model": model_name,
|
179 |
+
"criteria": criteria_score.criterion,
|
180 |
+
"score": criteria_score.score,
|
181 |
+
"explanation": criteria_score.explanation,
|
182 |
+
}
|
183 |
+
)
|
184 |
+
|
185 |
+
# Create DataFrame
|
186 |
+
return pd.DataFrame(data)
|
187 |
|
188 |
|
189 |
# Streamlit form UI
|
|
|
206 |
def get_response_mapping():
|
207 |
# Inspect the session state for all the responses.
|
208 |
# This is a dictionary mapping model names to their responses.
|
209 |
+
# The aggregator response is also included in this mapping under the key "<model>__aggregator_response".
|
210 |
response_mapping = {}
|
211 |
for key in st.session_state.keys():
|
212 |
+
if "judge" in key:
|
213 |
+
continue
|
214 |
+
if key.endswith("__response"):
|
215 |
response_mapping[get_model_from_response_key(key)] = st.session_state[key]
|
216 |
+
if key.endswith("__aggregator_response"):
|
217 |
response_mapping[key] = st.session_state[key]
|
218 |
return response_mapping
|
219 |
|
|
|
241 |
|
242 |
def get_default_direct_assessment_prompt(user_prompt):
|
243 |
return get_direct_assessment_prompt(
|
244 |
+
direct_assessment_prompt=DEFAULT_DIRECT_ASSESSMENT_PROMPT,
|
245 |
user_prompt=user_prompt,
|
246 |
+
response="{response}",
|
247 |
criteria_list=DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST,
|
248 |
options=SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
|
249 |
)
|
|
|
251 |
|
252 |
def get_aggregator_prompt(aggregator_prompt, user_prompt, llms):
|
253 |
responses_from_other_llms = "\n\n".join(
|
254 |
+
[
|
255 |
+
f"{get_ui_friendly_name(model)} START\n{st.session_state.get(get_response_key(model))}\n\n{get_ui_friendly_name(model)} END\n\n\n"
|
256 |
+
for model in llms
|
257 |
+
]
|
258 |
)
|
259 |
return aggregator_prompt.format(
|
260 |
user_prompt=user_prompt,
|
|
|
270 |
)
|
271 |
|
272 |
|
273 |
+
def get_ui_friendly_name(llm):
|
274 |
+
return LLM_TO_UI_NAME_MAP.get(llm, llm)
|
275 |
+
|
276 |
+
|
277 |
+
def get_parse_judging_response_for_direct_assessment_prompt(
|
278 |
+
judging_responses: dict[str, str],
|
279 |
+
criteria_list,
|
280 |
+
options,
|
281 |
+
):
|
282 |
+
formatted_judging_responses = "\n\n".join(
|
283 |
+
[
|
284 |
+
f"{get_ui_friendly_name(model)} START\n{judging_responses[model]}\n\n{get_ui_friendly_name(model)} END\n\n\n"
|
285 |
+
for model in judging_responses.keys()
|
286 |
+
]
|
287 |
+
)
|
288 |
+
return PARSE_JUDGING_RESPONSE_FOR_DIRECT_ASSESSMENT_PROMPT.format(
|
289 |
+
judging_responses=formatted_judging_responses,
|
290 |
+
criteria_list=format_criteria_list(criteria_list),
|
291 |
+
options=format_likert_comparison_options(options),
|
292 |
+
)
|
293 |
+
|
294 |
+
|
295 |
+
def get_model_from_direct_assessment_judging_key(judging_key):
|
296 |
+
return judging_key.split("__")[1]
|
297 |
+
|
298 |
+
|
299 |
+
def get_direct_assessment_judging_responses():
|
300 |
+
# Get the judging responses from the session state.
|
301 |
+
judging_responses = {}
|
302 |
+
for key in st.session_state.keys():
|
303 |
+
if key.startswith("direct_assessment_judge__"):
|
304 |
+
judging_responses[get_model_from_direct_assessment_judging_key(key)] = (
|
305 |
+
st.session_state[key]
|
306 |
+
)
|
307 |
+
return judging_responses
|
308 |
+
|
309 |
+
|
310 |
+
def parse_judging_responses(prompt: str) -> DirectAssessmentJudgingResponse:
|
311 |
+
completion = client.beta.chat.completions.parse(
|
312 |
+
model="gpt-4o-mini",
|
313 |
+
messages=[
|
314 |
+
{
|
315 |
+
"role": "system",
|
316 |
+
"content": "Parse the judging responses into structured data.",
|
317 |
+
},
|
318 |
+
{"role": "user", "content": prompt},
|
319 |
+
],
|
320 |
+
response_format=DirectAssessmentJudgingResponse,
|
321 |
+
)
|
322 |
+
return completion.choices[0].message.parsed
|
323 |
+
|
324 |
+
|
325 |
+
def plot_criteria_scores(df):
|
326 |
+
# Group by criteria and calculate mean and std over all judges.
|
327 |
+
grouped = df.groupby(["criteria"]).agg({"score": ["mean", "std"]}).reset_index()
|
328 |
+
|
329 |
+
# Flatten the MultiIndex columns
|
330 |
+
grouped.columns = ["criteria", "mean_score", "std_score"]
|
331 |
+
|
332 |
+
# Fill NaN std with zeros (in case there's only one score per group)
|
333 |
+
grouped["std_score"] = grouped["std_score"].fillna(0)
|
334 |
+
|
335 |
+
# Set up the plot
|
336 |
+
plt.figure(figsize=(8, 5))
|
337 |
+
|
338 |
+
# Create a horizontal bar plot
|
339 |
+
ax = sns.barplot(
|
340 |
+
data=grouped,
|
341 |
+
x="mean_score",
|
342 |
+
y="criteria",
|
343 |
+
hue="criteria",
|
344 |
+
errorbar=None, # Updated parameter
|
345 |
+
orient="h",
|
346 |
+
)
|
347 |
+
|
348 |
+
# Add error bars manually
|
349 |
+
# Iterate over the bars and add error bars
|
350 |
+
for i, (mean, std) in enumerate(zip(grouped["mean_score"], grouped["std_score"])):
|
351 |
+
# Get the current bar
|
352 |
+
bar = ax.patches[i]
|
353 |
+
# Calculate the center of the bar
|
354 |
+
center = bar.get_y() + bar.get_height() / 2
|
355 |
+
# Add the error bar
|
356 |
+
ax.errorbar(x=mean, y=center, xerr=std, ecolor="black", capsize=3, fmt="none")
|
357 |
+
|
358 |
+
# Set labels and title
|
359 |
+
ax.set_xlabel("")
|
360 |
+
ax.set_ylabel("")
|
361 |
+
plt.tight_layout()
|
362 |
+
|
363 |
+
# Display the plot in Streamlit
|
364 |
+
st.pyplot(plt.gcf())
|
365 |
+
|
366 |
+
|
367 |
# Main Streamlit App
|
368 |
def main():
|
369 |
st.set_page_config(
|
|
|
419 |
selected_models = llm_council_selector()
|
420 |
st.write("Selected Models:", selected_models)
|
421 |
selected_aggregator = aggregator_selector()
|
|
|
422 |
|
423 |
# Prompt input
|
424 |
user_prompt = st.text_area("Enter your prompt:")
|
|
|
426 |
if st.button("Submit"):
|
427 |
st.write("Responses:")
|
428 |
|
429 |
+
response_columns = st.columns(3)
|
430 |
+
|
431 |
+
selected_models_to_streamlit_column_map = {
|
432 |
+
model: response_columns[i] for i, model in enumerate(selected_models)
|
433 |
+
}
|
434 |
+
|
435 |
# Fetching and streaming responses from each selected model
|
436 |
+
for selected_model in selected_models:
|
437 |
+
with selected_models_to_streamlit_column_map[selected_model]:
|
438 |
+
st.write(get_ui_friendly_name(selected_model))
|
439 |
+
with st.chat_message(
|
440 |
+
selected_model,
|
441 |
+
avatar=PROVIDER_TO_AVATAR_MAP[selected_model],
|
442 |
+
):
|
443 |
+
message_placeholder = st.empty()
|
444 |
+
stream = get_llm_response_stream(selected_model, user_prompt)
|
445 |
+
if stream:
|
446 |
+
st.session_state[get_response_key(selected_model)] = (
|
447 |
+
message_placeholder.write_stream(stream)
|
448 |
+
)
|
449 |
|
450 |
# Get the aggregator prompt.
|
451 |
aggregator_prompt = get_default_aggregator_prompt(
|
|
|
453 |
)
|
454 |
|
455 |
with st.expander("Aggregator Prompt"):
|
456 |
+
st.code(aggregator_prompt)
|
457 |
|
458 |
# Fetching and streaming response from the aggregator
|
459 |
+
st.write(
|
460 |
+
f"Mixture-of-Agents response from {get_ui_friendly_name(selected_aggregator)}"
|
461 |
+
)
|
462 |
with st.chat_message(
|
463 |
selected_aggregator,
|
464 |
avatar=PROVIDER_TO_AVATAR_MAP[selected_aggregator],
|
|
|
484 |
|
485 |
# Depending on the assessment type, render different forms
|
486 |
if assessment_type == "Direct Assessment":
|
487 |
+
with st.expander("Direct Assessment Prompt"):
|
488 |
+
direct_assessment_prompt = st.text_area(
|
489 |
+
"Prompt for the Direct Assessment",
|
490 |
+
value=get_default_direct_assessment_prompt(user_prompt=user_prompt),
|
491 |
+
height=500,
|
492 |
+
)
|
493 |
|
494 |
# TODO: Add option to edit criteria list with a basic text field.
|
495 |
criteria_list = DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST
|
|
|
502 |
|
503 |
response_judging_columns = st.columns(3)
|
504 |
|
505 |
+
responses_for_judging_to_streamlit_column_map = {
|
506 |
model: response_judging_columns[i % 3]
|
507 |
for i, model in enumerate(responses_for_judging.keys())
|
508 |
}
|
|
|
510 |
# Get judging responses.
|
511 |
for response_model, response in responses_for_judging.items():
|
512 |
|
513 |
+
st_column = responses_for_judging_to_streamlit_column_map[
|
514 |
+
response_model
|
|
|
|
|
515 |
]
|
516 |
|
517 |
with st_column:
|
518 |
+
if "aggregator_response" in response_model:
|
519 |
+
judging_model_header = "Mixture-of-Agents Response"
|
520 |
+
else:
|
521 |
+
judging_model_header = get_ui_friendly_name(response_model)
|
522 |
+
st.write(f"Judging for {judging_model_header}")
|
523 |
judging_prompt = get_direct_assessment_prompt(
|
524 |
+
direct_assessment_prompt=direct_assessment_prompt,
|
525 |
+
user_prompt=user_prompt,
|
526 |
+
response=response,
|
527 |
+
criteria_list=criteria_list,
|
528 |
+
options=SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
|
529 |
)
|
530 |
|
531 |
+
with st.expander("Final Judging Prompt"):
|
532 |
+
st.code(judging_prompt)
|
533 |
+
|
534 |
for judging_model in selected_models:
|
535 |
+
with st.expander(
|
536 |
+
get_ui_friendly_name(judging_model), expanded=False
|
537 |
+
):
|
538 |
with st.chat_message(
|
539 |
judging_model,
|
540 |
avatar=PROVIDER_TO_AVATAR_MAP[judging_model],
|
541 |
):
|
|
|
542 |
message_placeholder = st.empty()
|
543 |
judging_stream = get_llm_response_stream(
|
544 |
judging_model, judging_prompt
|
545 |
)
|
546 |
if judging_stream:
|
547 |
st.session_state[
|
548 |
+
get_direct_assessment_judging_key(
|
549 |
judging_model, response_model
|
550 |
)
|
551 |
] = message_placeholder.write_stream(
|
|
|
554 |
# When all of the judging is finished for the given response, get the actual
|
555 |
# values, parsed (use gpt-4o-mini for now) with json mode.
|
556 |
# TODO.
|
557 |
+
judging_responses = get_direct_assessment_judging_responses()
|
558 |
+
parse_judging_response_prompt = (
|
559 |
+
get_parse_judging_response_for_direct_assessment_prompt(
|
560 |
+
judging_responses,
|
561 |
+
criteria_list,
|
562 |
+
SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
|
563 |
+
)
|
564 |
+
)
|
565 |
+
# Issue the prompt to openai mini with structured outputs
|
566 |
+
parsed_judging_responses = parse_judging_responses(
|
567 |
+
parse_judging_response_prompt
|
568 |
+
)
|
569 |
+
|
570 |
+
df = create_dataframe_for_direct_assessment_judging_response(
|
571 |
+
parsed_judging_responses
|
572 |
+
)
|
573 |
+
st.write(df)
|
574 |
+
|
575 |
+
# Log the output using st.write() under an st.expander
|
576 |
+
# with st.expander("Parsed Judging Responses", expanded=True):
|
577 |
+
# st.write(parsed_judging_responses)
|
578 |
+
plot_criteria_scores(df)
|
579 |
+
|
580 |
+
# TODO: Use parsed_judging_responses for further processing or display
|
581 |
|
582 |
elif assessment_type == "Pairwise Comparison":
|
583 |
pairwise_comparison_prompt = st.text_area(
|
constants.py
CHANGED
@@ -24,6 +24,16 @@ PROVIDER_TO_AVATAR_MAP = {
|
|
24 |
"anthropic://claude-3-haiku-20240307": "",
|
25 |
}
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# AGGREGATORS = ["openai://gpt-4o-mini", "openai://gpt-4o"]
|
28 |
AGGREGATORS = ["together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"]
|
29 |
|
|
|
24 |
"anthropic://claude-3-haiku-20240307": "",
|
25 |
}
|
26 |
|
27 |
+
LLM_TO_UI_NAME_MAP = {
|
28 |
+
"openai://gpt-4o-mini": "GPT-4 Turbo Mini",
|
29 |
+
"anthropic://claude-3-5-sonnet": "Claude 3 Sonnet",
|
30 |
+
"vertex://gemini-1.5-flash-001": "Gemini 1.5 Flash",
|
31 |
+
"together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": "Llama 3.1 8B Instruct",
|
32 |
+
"together://meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": "Llama 3.1 70B Instruct",
|
33 |
+
"together://meta-llama/Llama-3.2-3B-Instruct-Turbo": "Llama 3.2 3B Instruct",
|
34 |
+
"anthropic://claude-3-haiku-20240307": "Claude 3 Haiku",
|
35 |
+
}
|
36 |
+
|
37 |
# AGGREGATORS = ["openai://gpt-4o-mini", "openai://gpt-4o"]
|
38 |
AGGREGATORS = ["together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"]
|
39 |
|
judging_dataclasses.py
CHANGED
@@ -26,3 +26,18 @@ class PairwiseComparison(BaseModel):
|
|
26 |
|
27 |
class JudgingConfig(BaseModel):
|
28 |
assessment: Union[DirectAssessment, PairwiseComparison]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
class JudgingConfig(BaseModel):
|
28 |
assessment: Union[DirectAssessment, PairwiseComparison]
|
29 |
+
|
30 |
+
|
31 |
+
class DirectAssessmentCriterionScore(BaseModel):
|
32 |
+
criterion: str
|
33 |
+
score: int
|
34 |
+
explanation: str
|
35 |
+
|
36 |
+
|
37 |
+
class DirectAssessmentCriteriaScores(BaseModel):
|
38 |
+
model: str
|
39 |
+
criteria_scores: List[DirectAssessmentCriterionScore]
|
40 |
+
|
41 |
+
|
42 |
+
class DirectAssessmentJudgingResponse(BaseModel):
|
43 |
+
judging_models: List[DirectAssessmentCriteriaScores]
|
prompts.py
CHANGED
@@ -1,6 +1,21 @@
|
|
1 |
from judging_dataclasses import Criteria
|
2 |
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
DEFAULT_AGGREGATOR_PROMPT = """We are trying to come up with the best response to a user query based on an aggregation of other responses.
|
5 |
|
6 |
[USER PROMPT START]
|
|
|
1 |
from judging_dataclasses import Criteria
|
2 |
|
3 |
|
4 |
+
PARSE_JUDGING_RESPONSE_FOR_DIRECT_ASSESSMENT_PROMPT = """We are trying to parse the responses from the judges for a direct assessment.
|
5 |
+
|
6 |
+
Each judge was asked to give a rating for each of the following criteria, along with an explanation:
|
7 |
+
{criteria_list}
|
8 |
+
|
9 |
+
The possible options for each criterion are as follows:
|
10 |
+
{options}
|
11 |
+
|
12 |
+
The responses from the judges are as follows:
|
13 |
+
{judging_responses}
|
14 |
+
|
15 |
+
Please provide a JSON object with the following structure that includes the model name and the scores for each of the criteria, along with the explanation.
|
16 |
+
"""
|
17 |
+
|
18 |
+
|
19 |
DEFAULT_AGGREGATOR_PROMPT = """We are trying to come up with the best response to a user query based on an aggregation of other responses.
|
20 |
|
21 |
[USER PROMPT START]
|