sh1gechan commited on
Commit
25b9d6a
·
verified ·
1 Parent(s): 1926e3c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -23
app.py CHANGED
@@ -147,34 +147,30 @@ def filter_models(
147
  print(f"Initial df shape: {df.shape}")
148
  print(f"Initial df content:\n{df}")
149
 
150
- if show_deleted:
151
- filtered_df = df
152
- else:
153
- filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
154
- print(f"After deletion filter: {filtered_df.shape}")
155
- print(f"After deletion filter content:\n{filtered_df}")
156
-
157
- type_emoji = [t[0] for t in type_query]
158
- filtered_df = filtered_df.loc[filtered_df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
159
  print(f"After type filter: {filtered_df.shape}")
160
  print(f"After type filter content:\n{filtered_df}")
161
 
162
- filtered_df = filtered_df.loc[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
 
163
  print(f"After precision filter: {filtered_df.shape}")
164
  print(f"After precision filter content:\n{filtered_df}")
165
 
166
- filtered_df = filtered_df.loc[filtered_df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
167
  print(f"After add_special_tokens filter: {filtered_df.shape}")
168
  print(f"After add_special_tokens filter content:\n{filtered_df}")
169
 
170
- filtered_df = filtered_df.loc[filtered_df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
171
  print(f"After num_few_shots filter: {filtered_df.shape}")
172
  print(f"After num_few_shots filter content:\n{filtered_df}")
173
 
174
- numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
175
- params_column = pd.to_numeric(filtered_df[AutoEvalColumn.params.name], errors="coerce")
176
- mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
177
- filtered_df = filtered_df.loc[mask]
178
  print(f"After size filter: {filtered_df.shape}")
179
  print(f"After size filter content:\n{filtered_df}")
180
 
@@ -261,11 +257,10 @@ with demo:
261
  elem_id="filter-columns-num-few-shots",
262
  )
263
 
 
 
264
  leaderboard_table = gr.components.Dataframe(
265
- value=leaderboard_df[
266
- [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
267
- + shown_columns.value
268
- ],
269
  headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
270
  datatype=TYPES,
271
  elem_id="leaderboard-table",
@@ -273,9 +268,9 @@ with demo:
273
  visible=True,
274
  )
275
  print("Leaderboard table initial value:")
276
- print(leaderboard_table.value.head())
277
- print(f"Leaderboard table shape: {leaderboard_table.value.shape}")
278
-
279
  # Dummy leaderboard for handling the case when the user uses backspace key
280
  hidden_leaderboard_table_for_search = gr.components.Dataframe(
281
  value=original_df[COLS],
 
147
  print(f"Initial df shape: {df.shape}")
148
  print(f"Initial df content:\n{df}")
149
 
150
+ filtered_df = df
151
+
152
+ # type_emoji = [t[0] for t in type_query]
153
+ # filtered_df = filtered_df[filtered_df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
 
 
 
 
 
154
  print(f"After type filter: {filtered_df.shape}")
155
  print(f"After type filter content:\n{filtered_df}")
156
 
157
+ # Precision filterをコメントアウト
158
+ # filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
159
  print(f"After precision filter: {filtered_df.shape}")
160
  print(f"After precision filter content:\n{filtered_df}")
161
 
162
+ # filtered_df = filtered_df[filtered_df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
163
  print(f"After add_special_tokens filter: {filtered_df.shape}")
164
  print(f"After add_special_tokens filter content:\n{filtered_df}")
165
 
166
+ # filtered_df = filtered_df[filtered_df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
167
  print(f"After num_few_shots filter: {filtered_df.shape}")
168
  print(f"After num_few_shots filter content:\n{filtered_df}")
169
 
170
+ # numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
171
+ # params_column = pd.to_numeric(filtered_df[AutoEvalColumn.params.name], errors="coerce")
172
+ # mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
173
+ # filtered_df = filtered_df.loc[mask]
174
  print(f"After size filter: {filtered_df.shape}")
175
  print(f"After size filter content:\n{filtered_df}")
176
 
 
257
  elem_id="filter-columns-num-few-shots",
258
  )
259
 
260
+ leaderboard_df_filtered = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
261
+
262
  leaderboard_table = gr.components.Dataframe(
263
+ value=leaderboard_df_filtered,
 
 
 
264
  headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
265
  datatype=TYPES,
266
  elem_id="leaderboard-table",
 
268
  visible=True,
269
  )
270
  print("Leaderboard table initial value:")
271
+ print(leaderboard_table.value)
272
+ print(f"Leaderboard table shape: {leaderboard_table.value.shape if isinstance(leaderboard_table.value, pd.DataFrame) else 'Not a DataFrame'}")
273
+
274
  # Dummy leaderboard for handling the case when the user uses backspace key
275
  hidden_leaderboard_table_for_search = gr.components.Dataframe(
276
  value=original_df[COLS],