Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -147,34 +147,30 @@ def filter_models(
|
|
147 |
print(f"Initial df shape: {df.shape}")
|
148 |
print(f"Initial df content:\n{df}")
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
print(f"After deletion filter: {filtered_df.shape}")
|
155 |
-
print(f"After deletion filter content:\n{filtered_df}")
|
156 |
-
|
157 |
-
type_emoji = [t[0] for t in type_query]
|
158 |
-
filtered_df = filtered_df.loc[filtered_df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
159 |
print(f"After type filter: {filtered_df.shape}")
|
160 |
print(f"After type filter content:\n{filtered_df}")
|
161 |
|
162 |
-
|
|
|
163 |
print(f"After precision filter: {filtered_df.shape}")
|
164 |
print(f"After precision filter content:\n{filtered_df}")
|
165 |
|
166 |
-
filtered_df = filtered_df
|
167 |
print(f"After add_special_tokens filter: {filtered_df.shape}")
|
168 |
print(f"After add_special_tokens filter content:\n{filtered_df}")
|
169 |
|
170 |
-
filtered_df = filtered_df
|
171 |
print(f"After num_few_shots filter: {filtered_df.shape}")
|
172 |
print(f"After num_few_shots filter content:\n{filtered_df}")
|
173 |
|
174 |
-
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
175 |
-
params_column = pd.to_numeric(filtered_df[AutoEvalColumn.params.name], errors="coerce")
|
176 |
-
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
177 |
-
filtered_df = filtered_df.loc[mask]
|
178 |
print(f"After size filter: {filtered_df.shape}")
|
179 |
print(f"After size filter content:\n{filtered_df}")
|
180 |
|
@@ -261,11 +257,10 @@ with demo:
|
|
261 |
elem_id="filter-columns-num-few-shots",
|
262 |
)
|
263 |
|
|
|
|
|
264 |
leaderboard_table = gr.components.Dataframe(
|
265 |
-
value=
|
266 |
-
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
267 |
-
+ shown_columns.value
|
268 |
-
],
|
269 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
270 |
datatype=TYPES,
|
271 |
elem_id="leaderboard-table",
|
@@ -273,9 +268,9 @@ with demo:
|
|
273 |
visible=True,
|
274 |
)
|
275 |
print("Leaderboard table initial value:")
|
276 |
-
print(leaderboard_table.value
|
277 |
-
print(f"Leaderboard table shape: {leaderboard_table.value.shape}")
|
278 |
-
|
279 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
280 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
281 |
value=original_df[COLS],
|
|
|
147 |
print(f"Initial df shape: {df.shape}")
|
148 |
print(f"Initial df content:\n{df}")
|
149 |
|
150 |
+
filtered_df = df
|
151 |
+
|
152 |
+
# type_emoji = [t[0] for t in type_query]
|
153 |
+
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
|
|
|
|
|
|
|
|
|
|
154 |
print(f"After type filter: {filtered_df.shape}")
|
155 |
print(f"After type filter content:\n{filtered_df}")
|
156 |
|
157 |
+
# Precision filterをコメントアウト
|
158 |
+
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
159 |
print(f"After precision filter: {filtered_df.shape}")
|
160 |
print(f"After precision filter content:\n{filtered_df}")
|
161 |
|
162 |
+
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
163 |
print(f"After add_special_tokens filter: {filtered_df.shape}")
|
164 |
print(f"After add_special_tokens filter content:\n{filtered_df}")
|
165 |
|
166 |
+
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
|
167 |
print(f"After num_few_shots filter: {filtered_df.shape}")
|
168 |
print(f"After num_few_shots filter content:\n{filtered_df}")
|
169 |
|
170 |
+
# numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
171 |
+
# params_column = pd.to_numeric(filtered_df[AutoEvalColumn.params.name], errors="coerce")
|
172 |
+
# mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
173 |
+
# filtered_df = filtered_df.loc[mask]
|
174 |
print(f"After size filter: {filtered_df.shape}")
|
175 |
print(f"After size filter content:\n{filtered_df}")
|
176 |
|
|
|
257 |
elem_id="filter-columns-num-few-shots",
|
258 |
)
|
259 |
|
260 |
+
leaderboard_df_filtered = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
261 |
+
|
262 |
leaderboard_table = gr.components.Dataframe(
|
263 |
+
value=leaderboard_df_filtered,
|
|
|
|
|
|
|
264 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
265 |
datatype=TYPES,
|
266 |
elem_id="leaderboard-table",
|
|
|
268 |
visible=True,
|
269 |
)
|
270 |
print("Leaderboard table initial value:")
|
271 |
+
print(leaderboard_table.value)
|
272 |
+
print(f"Leaderboard table shape: {leaderboard_table.value.shape if isinstance(leaderboard_table.value, pd.DataFrame) else 'Not a DataFrame'}")
|
273 |
+
|
274 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
275 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
276 |
value=original_df[COLS],
|