Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -63,6 +63,38 @@ leaderboard_df = original_df.copy()
|
|
63 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
64 |
|
65 |
# Searching and filtering
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
def update_table(
|
67 |
hidden_df: pd.DataFrame,
|
68 |
columns: list,
|
@@ -93,8 +125,13 @@ def update_table(
|
|
93 |
print(f"Final df shape: {df.shape}")
|
94 |
print("Final dataframe head:")
|
95 |
print(df.head())
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
100 |
query = request.query_params.get("query") or ""
|
@@ -272,7 +309,8 @@ with demo:
|
|
272 |
leaderboard_df_filtered = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
273 |
initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
|
274 |
leaderboard_df_filtered = select_columns(leaderboard_df_filtered, initial_columns)
|
275 |
-
|
|
|
276 |
# leaderboard_table = gr.components.Dataframe(
|
277 |
# value=leaderboard_df_filtered,
|
278 |
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
@@ -282,9 +320,9 @@ with demo:
|
|
282 |
# visible=True,
|
283 |
# )
|
284 |
leaderboard_table = gr.components.Dataframe(
|
285 |
-
value=leaderboard_df_filtered,
|
286 |
headers=list(leaderboard_df_filtered.columns),
|
287 |
-
datatype=
|
288 |
elem_id="leaderboard-table",
|
289 |
interactive=False,
|
290 |
visible=True,
|
|
|
63 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
64 |
|
65 |
# Searching and filtering
|
66 |
+
# def update_table(
|
67 |
+
# hidden_df: pd.DataFrame,
|
68 |
+
# columns: list,
|
69 |
+
# type_query: list,
|
70 |
+
# precision_query: str,
|
71 |
+
# size_query: list,
|
72 |
+
# add_special_tokens_query: list,
|
73 |
+
# num_few_shots_query: list,
|
74 |
+
# show_deleted: bool,
|
75 |
+
# show_merges: bool,
|
76 |
+
# show_flagged: bool,
|
77 |
+
# query: str,
|
78 |
+
# ):
|
79 |
+
# print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
|
80 |
+
# print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
81 |
+
|
82 |
+
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
83 |
+
# print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
84 |
+
|
85 |
+
# filtered_df = filter_queries(query, filtered_df)
|
86 |
+
# print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
|
87 |
+
|
88 |
+
# print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
89 |
+
# print("Filtered dataframe head:")
|
90 |
+
# print(filtered_df.head())
|
91 |
+
|
92 |
+
# df = select_columns(filtered_df, columns)
|
93 |
+
# print(f"Final df shape: {df.shape}")
|
94 |
+
# print("Final dataframe head:")
|
95 |
+
# print(df.head())
|
96 |
+
# return df
|
97 |
+
|
98 |
def update_table(
|
99 |
hidden_df: pd.DataFrame,
|
100 |
columns: list,
|
|
|
125 |
print(f"Final df shape: {df.shape}")
|
126 |
print("Final dataframe head:")
|
127 |
print(df.head())
|
128 |
+
column_dtypes = {col: TYPES[COLS.index(col)] if col in COLS else "str" for col in df.columns}
|
129 |
+
|
130 |
+
return gr.Dataframe.update(
|
131 |
+
value=df.to_dict(orient="records"),
|
132 |
+
headers=list(df.columns),
|
133 |
+
datatype=column_dtypes
|
134 |
+
)
|
135 |
|
136 |
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
137 |
query = request.query_params.get("query") or ""
|
|
|
309 |
leaderboard_df_filtered = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
310 |
initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
|
311 |
leaderboard_df_filtered = select_columns(leaderboard_df_filtered, initial_columns)
|
312 |
+
column_dtypes = {col: TYPES[COLS.index(col)] if col in COLS else "str" for col in leaderboard_df_filtered.columns}
|
313 |
+
|
314 |
# leaderboard_table = gr.components.Dataframe(
|
315 |
# value=leaderboard_df_filtered,
|
316 |
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
|
|
320 |
# visible=True,
|
321 |
# )
|
322 |
leaderboard_table = gr.components.Dataframe(
|
323 |
+
value=leaderboard_df_filtered.to_dict(orient="records"),
|
324 |
headers=list(leaderboard_df_filtered.columns),
|
325 |
+
datatype=column_dtypes,
|
326 |
elem_id="leaderboard-table",
|
327 |
interactive=False,
|
328 |
visible=True,
|