llmahmad commited on
Commit
12392a6
·
verified ·
1 Parent(s): 9758b14

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -17
app.py CHANGED
@@ -1,27 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
  os.system('pip install streamlit transformers torch')
3
 
4
  import streamlit as st
5
- from transformers import BartTokenizer, BartForConditionalGeneration
6
 
7
- # Load the model and tokenizer
8
- model_name = 'facebook/bart-large-cnn'
9
-
10
- tokenizer = BartTokenizer.from_pretrained(model_name)
11
- model = BartForConditionalGeneration.from_pretrained(model_name)
12
 
13
  def summarize_text(text):
14
- inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest")
15
- summary_ids = model.generate(
16
- inputs["input_ids"],
17
- max_length=150,
18
- min_length=30,
19
- length_penalty=2.0,
20
- num_beams=4,
21
- early_stopping=True
22
- )
23
- summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
24
- return summary
25
 
26
  st.title("Text Summarization with Fine-Tuned Model")
27
  st.write("Enter text to generate a summary using the fine-tuned summarization model.")
 
1
+ # import os
2
+ # os.system('pip install streamlit transformers torch')
3
+
4
+ # import streamlit as st
5
+ # from transformers import BartTokenizer, BartForConditionalGeneration
6
+
7
+ # # Load the model and tokenizer
8
+ # model_name = 'facebook/bart-large-cnn'
9
+
10
+ # tokenizer = BartTokenizer.from_pretrained(model_name)
11
+ # model = BartForConditionalGeneration.from_pretrained(model_name)
12
+
13
+ # def summarize_text(text):
14
+ # inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest")
15
+ # summary_ids = model.generate(
16
+ # inputs["input_ids"],
17
+ # max_length=150,
18
+ # min_length=30,
19
+ # length_penalty=2.0,
20
+ # num_beams=4,
21
+ # early_stopping=True
22
+ # )
23
+ # summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
24
+ # return summary
25
+
26
+ # st.title("Text Summarization with Fine-Tuned Model")
27
+ # st.write("Enter text to generate a summary using the fine-tuned summarization model.")
28
+
29
+ # text = st.text_area("Input Text", height=200)
30
+ # if st.button("Summarize"):
31
+ # if text:
32
+ # with st.spinner("Summarizing..."):
33
+ # summary = summarize_text(text)
34
+ # st.success("Summary Generated")
35
+ # st.write(summary)
36
+ # else:
37
+ # st.warning("Please enter some text to summarize.")
38
+
39
+ # if __name__ == "__main__":
40
+ # st.set_option('deprecation.showfileUploaderEncoding', False)
41
+ # st.markdown(
42
+ # """
43
+ # <style>
44
+ # .reportview-container {
45
+ # flex-direction: row;
46
+ # justify-content: center.
47
+ # }
48
+ # </style>
49
+ # """,
50
+ # unsafe_allow_html=True
51
+ # )
52
  import os
53
  os.system('pip install streamlit transformers torch')
54
 
55
  import streamlit as st
56
+ from transformers import pipeline
57
 
58
+ # Load the summarization pipeline
59
+ summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
 
 
 
60
 
61
  def summarize_text(text):
62
+ summary = summarizer(text, max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
63
+ return summary[0]['summary_text']
 
 
 
 
 
 
 
 
 
64
 
65
  st.title("Text Summarization with Fine-Tuned Model")
66
  st.write("Enter text to generate a summary using the fine-tuned summarization model.")