Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
os.system('pip install streamlit transformers torch')
|
3 |
|
4 |
import streamlit as st
|
5 |
-
from transformers import
|
6 |
|
7 |
-
# Load the
|
8 |
-
|
9 |
-
|
10 |
-
tokenizer = BartTokenizer.from_pretrained(model_name)
|
11 |
-
model = BartForConditionalGeneration.from_pretrained(model_name)
|
12 |
|
13 |
def summarize_text(text):
|
14 |
-
|
15 |
-
|
16 |
-
inputs["input_ids"],
|
17 |
-
max_length=150,
|
18 |
-
min_length=30,
|
19 |
-
length_penalty=2.0,
|
20 |
-
num_beams=4,
|
21 |
-
early_stopping=True
|
22 |
-
)
|
23 |
-
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
24 |
-
return summary
|
25 |
|
26 |
st.title("Text Summarization with Fine-Tuned Model")
|
27 |
st.write("Enter text to generate a summary using the fine-tuned summarization model.")
|
|
|
1 |
+
# import os
|
2 |
+
# os.system('pip install streamlit transformers torch')
|
3 |
+
|
4 |
+
# import streamlit as st
|
5 |
+
# from transformers import BartTokenizer, BartForConditionalGeneration
|
6 |
+
|
7 |
+
# # Load the model and tokenizer
|
8 |
+
# model_name = 'facebook/bart-large-cnn'
|
9 |
+
|
10 |
+
# tokenizer = BartTokenizer.from_pretrained(model_name)
|
11 |
+
# model = BartForConditionalGeneration.from_pretrained(model_name)
|
12 |
+
|
13 |
+
# def summarize_text(text):
|
14 |
+
# inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest")
|
15 |
+
# summary_ids = model.generate(
|
16 |
+
# inputs["input_ids"],
|
17 |
+
# max_length=150,
|
18 |
+
# min_length=30,
|
19 |
+
# length_penalty=2.0,
|
20 |
+
# num_beams=4,
|
21 |
+
# early_stopping=True
|
22 |
+
# )
|
23 |
+
# summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
24 |
+
# return summary
|
25 |
+
|
26 |
+
# st.title("Text Summarization with Fine-Tuned Model")
|
27 |
+
# st.write("Enter text to generate a summary using the fine-tuned summarization model.")
|
28 |
+
|
29 |
+
# text = st.text_area("Input Text", height=200)
|
30 |
+
# if st.button("Summarize"):
|
31 |
+
# if text:
|
32 |
+
# with st.spinner("Summarizing..."):
|
33 |
+
# summary = summarize_text(text)
|
34 |
+
# st.success("Summary Generated")
|
35 |
+
# st.write(summary)
|
36 |
+
# else:
|
37 |
+
# st.warning("Please enter some text to summarize.")
|
38 |
+
|
39 |
+
# if __name__ == "__main__":
|
40 |
+
# st.set_option('deprecation.showfileUploaderEncoding', False)
|
41 |
+
# st.markdown(
|
42 |
+
# """
|
43 |
+
# <style>
|
44 |
+
# .reportview-container {
|
45 |
+
# flex-direction: row;
|
46 |
+
# justify-content: center.
|
47 |
+
# }
|
48 |
+
# </style>
|
49 |
+
# """,
|
50 |
+
# unsafe_allow_html=True
|
51 |
+
# )
|
52 |
import os
|
53 |
os.system('pip install streamlit transformers torch')
|
54 |
|
55 |
import streamlit as st
|
56 |
+
from transformers import pipeline
|
57 |
|
58 |
+
# Load the summarization pipeline
|
59 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
|
|
|
|
|
|
60 |
|
61 |
def summarize_text(text):
|
62 |
+
summary = summarizer(text, max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
|
63 |
+
return summary[0]['summary_text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
st.title("Text Summarization with Fine-Tuned Model")
|
66 |
st.write("Enter text to generate a summary using the fine-tuned summarization model.")
|