# import os # os.system('pip install streamlit transformers torch') # import streamlit as st # from transformers import BartTokenizer, BartForConditionalGeneration # # Load the model and tokenizer # model_name = 'facebook/bart-large-cnn' # tokenizer = BartTokenizer.from_pretrained(model_name) # model = BartForConditionalGeneration.from_pretrained(model_name) # def summarize_text(text): # inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest") # summary_ids = model.generate( # inputs["input_ids"], # max_length=150, # min_length=30, # length_penalty=2.0, # num_beams=4, # early_stopping=True # ) # summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) # return summary # st.title("Text Summarization with Fine-Tuned Model") # st.write("Enter text to generate a summary using the fine-tuned summarization model.") # text = st.text_area("Input Text", height=200) # if st.button("Summarize"): # if text: # with st.spinner("Summarizing..."): # summary = summarize_text(text) # st.success("Summary Generated") # st.write(summary) # else: # st.warning("Please enter some text to summarize.") # if __name__ == "__main__": # st.set_option('deprecation.showfileUploaderEncoding', False) # st.markdown( # """ # # """, # unsafe_allow_html=True # ) import os os.system('pip install streamlit transformers torch') import streamlit as st from transformers import pipeline # Load the summarization pipeline summarizer = pipeline("summarization", model="facebook/bart-large-cnn") def summarize_text(text): summary = summarizer(text, max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True) return summary[0]['summary_text'] st.title("Text Summarization with Fine-Tuned Model") st.write("Enter text to generate a summary using the fine-tuned summarization model.") text = st.text_area("Input Text", height=200) if st.button("Summarize"): if text: with st.spinner("Summarizing..."): summary = summarize_text(text) st.success("Summary Generated") st.write(summary) else: st.warning("Please enter some text to summarize.") if __name__ == "__main__": st.set_option('deprecation.showfileUploaderEncoding', False) st.markdown( """ """, unsafe_allow_html=True )