File size: 1,013 Bytes
db7ea0e
e2ccc4b
 
e34a9a0
c9d9455
e34a9a0
 
 
db7ea0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de0bdd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# Load the GPT-2 model and tokenizer
import os
os.system('pip install streamlit transformers torch')
import streamlit as st
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch


model_name = 'gpt2-large'
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)

def generate_blog_post(topic):
    # Encode the input topic
    inputs = tokenizer.encode(topic, return_tensors='pt')

    # Generate the blog post
    outputs = model.generate(inputs, max_length=500, num_return_sequences=1, no_repeat_ngram_size=2, 
                             do_sample=True, top_k=50, top_p=0.95, temperature=0.9)

    # Decode the generated text
    blog_post = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return blog_post

# Streamlit app
st.title("Blog Post Generator")
st.write("Enter a topic to generate a blog post.")

topic = st.text_input("Topic:")

if st.button("Generate"):
    blog_post = generate_blog_post(topic)
    st.write(blog_post)