Spaces:
Runtime error
Runtime error
lmattingly13
commited on
Commit
·
049b8a4
1
Parent(s):
4b5247c
added resize method, now large images are working
Browse files
app.py
CHANGED
@@ -8,6 +8,8 @@ from PIL import Image
|
|
8 |
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
|
9 |
import cv2
|
10 |
|
|
|
|
|
11 |
title = "ControlNet for Cartoon-ifying"
|
12 |
description = "This is a demo on ControlNet for changing images of people into cartoons of different styles."
|
13 |
examples = [["./simpsons_human_1.jpg", "turn into a simpsons character", "./simpsons_animated_1.jpg"]]
|
@@ -30,17 +32,31 @@ pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
|
|
30 |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16
|
31 |
)
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
def create_key(seed=0):
|
34 |
return jax.random.PRNGKey(seed)
|
35 |
|
36 |
def infer(prompts, image):
|
37 |
params["controlnet"] = controlnet_params
|
38 |
|
|
|
39 |
num_samples = 1 #jax.device_count()
|
40 |
rng = create_key(0)
|
41 |
rng = jax.random.split(rng, jax.device_count())
|
42 |
-
im = image
|
43 |
-
image = Image.fromarray(im)
|
44 |
|
45 |
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
|
46 |
processed_image = pipe.prepare_image_inputs([image] * num_samples)
|
|
|
8 |
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
|
9 |
import cv2
|
10 |
|
11 |
+
|
12 |
+
|
13 |
title = "ControlNet for Cartoon-ifying"
|
14 |
description = "This is a demo on ControlNet for changing images of people into cartoons of different styles."
|
15 |
examples = [["./simpsons_human_1.jpg", "turn into a simpsons character", "./simpsons_animated_1.jpg"]]
|
|
|
32 |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16
|
33 |
)
|
34 |
|
35 |
+
def resize_image(im, max_size):
|
36 |
+
im_np = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
|
37 |
+
|
38 |
+
height, width = im_np.shape[:2]
|
39 |
+
|
40 |
+
scale_factor = max_size / max(height, width)
|
41 |
+
|
42 |
+
resized_np = cv2.resize(im_np, (int(width * scale_factor), int(height * scale_factor)))
|
43 |
+
|
44 |
+
resized_im = Image.fromarray(resized_np)
|
45 |
+
|
46 |
+
return resized_im
|
47 |
+
|
48 |
def create_key(seed=0):
|
49 |
return jax.random.PRNGKey(seed)
|
50 |
|
51 |
def infer(prompts, image):
|
52 |
params["controlnet"] = controlnet_params
|
53 |
|
54 |
+
image = resize_image(image, 500)
|
55 |
num_samples = 1 #jax.device_count()
|
56 |
rng = create_key(0)
|
57 |
rng = jax.random.split(rng, jax.device_count())
|
58 |
+
#im = image
|
59 |
+
#image = Image.fromarray(im)
|
60 |
|
61 |
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
|
62 |
processed_image = pipe.prepare_image_inputs([image] * num_samples)
|