Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
import faiss
|
4 |
+
from transformers import DistilBertTokenizer, DistilBertModel
|
5 |
+
import streamlit as st
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
# Initialize tokenizer and model
|
9 |
+
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
10 |
+
model = DistilBertModel.from_pretrained('distilbert-base-uncased')
|
11 |
+
|
12 |
+
# Load and preprocess drug names
|
13 |
+
def load_drug_names(file_path):
|
14 |
+
df = pd.read_csv(file_path)
|
15 |
+
if 'drug_name' in df.columns:
|
16 |
+
return df['drug_name'].str.lower().str.strip().tolist()
|
17 |
+
else:
|
18 |
+
st.error("Column 'drug_name' not found in the CSV file.")
|
19 |
+
st.stop()
|
20 |
+
|
21 |
+
# Get embeddings
|
22 |
+
def get_embeddings(texts):
|
23 |
+
inputs = tokenizer(texts, return_tensors='pt', padding=True, truncation=True)
|
24 |
+
with torch.no_grad():
|
25 |
+
outputs = model(**inputs)
|
26 |
+
return outputs.last_hidden_state.mean(dim=1).numpy()
|
27 |
+
|
28 |
+
# Create FAISS index
|
29 |
+
def create_faiss_index(embeddings):
|
30 |
+
dimension = embeddings.shape[1]
|
31 |
+
index = faiss.IndexFlatL2(dimension)
|
32 |
+
index.add(embeddings)
|
33 |
+
return index
|
34 |
+
|
35 |
+
# Load FAISS index
|
36 |
+
def load_faiss_index(index_file):
|
37 |
+
return faiss.read_index(index_file)
|
38 |
+
|
39 |
+
# Check if FAISS index is empty
|
40 |
+
def is_faiss_index_empty(index_file):
|
41 |
+
try:
|
42 |
+
index = faiss.read_index(index_file)
|
43 |
+
return index.ntotal == 0
|
44 |
+
except:
|
45 |
+
return True
|
46 |
+
|
47 |
+
# Search FAISS index
|
48 |
+
def search_index(index, embedding, k=1):
|
49 |
+
distances, indices = index.search(embedding, k)
|
50 |
+
return distances, indices
|
51 |
+
|
52 |
+
# Load drug names
|
53 |
+
drug_names = load_drug_names('drug_names.csv')
|
54 |
+
|
55 |
+
# Check if FAISS index needs to be created
|
56 |
+
if is_faiss_index_empty('faiss_index.index'):
|
57 |
+
embeddings = get_embeddings(drug_names)
|
58 |
+
index = create_faiss_index(embeddings)
|
59 |
+
faiss.write_index(index, 'faiss_index.index')
|
60 |
+
else:
|
61 |
+
index = load_faiss_index('faiss_index.index')
|
62 |
+
|
63 |
+
# Streamlit app
|
64 |
+
st.title("Doctor's Handwritten Prescription Prediction")
|
65 |
+
|
66 |
+
# Single input prediction
|
67 |
+
single_drug_name = st.text_input("Enter the partial or misspelled drug name:")
|
68 |
+
if st.button("Predict Single Drug Name"):
|
69 |
+
if single_drug_name:
|
70 |
+
single_embedding = get_embeddings([single_drug_name.lower().strip()])
|
71 |
+
distances, indices = search_index(index, single_embedding)
|
72 |
+
closest_drug_name = drug_names[indices[0][0]]
|
73 |
+
st.write(f"Predicted Drug Name: {closest_drug_name}")
|
74 |
+
else:
|
75 |
+
st.write("Please enter a drug name to predict.")
|
76 |
+
|
77 |
+
# Batch prediction
|
78 |
+
st.header("Batch Prediction")
|
79 |
+
uploaded_pred_file = st.file_uploader("Choose a CSV file with predictions", type="csv")
|
80 |
+
if uploaded_pred_file is not None:
|
81 |
+
st.write("Uploaded prediction file preview:")
|
82 |
+
pred_df = pd.read_csv(uploaded_pred_file)
|
83 |
+
st.write(pred_df.head())
|
84 |
+
|
85 |
+
if 'predicted_drug_name' in pred_df.columns:
|
86 |
+
pred_texts = pred_df['predicted_drug_name'].str.lower().str.strip().tolist()
|
87 |
+
elif 'drug_name' in pred_df.columns:
|
88 |
+
pred_texts = pred_df['drug_name'].str.lower().str.strip().tolist()
|
89 |
+
else:
|
90 |
+
st.error("The CSV file must contain a column named 'predicted_drug_name' or 'drug_name'.")
|
91 |
+
st.stop()
|
92 |
+
|
93 |
+
pred_embeddings = get_embeddings(pred_texts)
|
94 |
+
predictions = []
|
95 |
+
for i, (pred_text, pred_embedding) in enumerate(zip(pred_texts, pred_embeddings), start=1):
|
96 |
+
distances, indices = search_index(index, np.expand_dims(pred_embedding, axis=0))
|
97 |
+
closest_drug_name = drug_names[indices[0][0]]
|
98 |
+
predictions.append((i, pred_text, closest_drug_name))
|
99 |
+
|
100 |
+
results_df = pd.DataFrame(predictions, columns=['Serial No', 'Original Prediction', 'Closest Drug Name'])
|
101 |
+
results_df.to_csv('predictions_with_matches.csv', index=False)
|
102 |
+
st.write("Batch prediction completed. You can download the results below.")
|
103 |
+
st.download_button(
|
104 |
+
label="Download Predictions",
|
105 |
+
data=results_df.to_csv(index=False).encode('utf-8'),
|
106 |
+
file_name='predictions_with_matches.csv',
|
107 |
+
mime='text/csv',
|
108 |
+
)
|