File size: 9,974 Bytes
95832a7 1a0062c 9a0f89a 1a0062c 08127ac 82a31e6 ef7e3f3 fc4df2e a81bc8e e541028 f54f343 aa2b41a e3fe553 3fe46bf b36ae86 b870ea1 3fe46bf b870ea1 b36ae86 3fe46bf b36ae86 aa2b41a 3fe46bf aa2b41a b36ae86 3fe46bf b36ae86 f54f343 b36ae86 aa2b41a f54f343 aa2b41a f54f343 aa2b41a f54f343 8323531 f54f343 8323531 aa2b41a f54f343 aa2b41a f54f343 b870ea1 f54f343 b36ae86 aa2b41a f54f343 aa2b41a f54f343 b36ae86 a81bc8e f54f343 a81bc8e f54f343 aa2b41a f54f343 aa2b41a f54f343 aa2b41a f54f343 aa2b41a f54f343 aa2b41a f54f343 e3fe553 f54f343 a81bc8e 8323531 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import logging
import gradio as gr
from queue import Queue
import time
from prometheus_client import start_http_server, Counter, Histogram, Gauge
import threading
import psutil
import random
from transformers import pipeline
from sklearn.metrics import precision_score, recall_score, f1_score
import requests
from datasets import load_dataset
import os
# --- Ensure chat_log.txt exists ---
log_file = "chat_log.txt"
try:
if not os.path.exists(log_file):
with open(log_file, 'w') as f:
f.write("Log file created.\n") # Write a simple message to the log file
print(f"{log_file} is ready for logging.")
except Exception as e:
print(f"Error creating log file: {e}")
# --- Logging Setup ---
try:
logging.basicConfig(filename=log_file, level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
logging.debug("Logging setup complete.")
except Exception as e:
print(f"Error setting up logging: {e}")
# Load the model
try:
ner_pipeline = pipeline("ner", model="Sevixdd/roberta-base-finetuned-ner")
logging.debug("NER pipeline loaded.")
except Exception as e:
logging.error(f"Error loading NER pipeline: {e}")
# Load the dataset
try:
dataset = load_dataset("surrey-nlp/PLOD-filtered")
logging.debug("Dataset loaded.")
except Exception as e:
logging.error(f"Error loading dataset: {e}")
# --- Prometheus Metrics Setup ---
try:
REQUEST_COUNT = Counter('gradio_request_count', 'Total number of requests')
REQUEST_LATENCY = Histogram('gradio_request_latency_seconds', 'Request latency in seconds')
ERROR_COUNT = Counter('gradio_error_count', 'Total number of errors')
RESPONSE_SIZE = Histogram('gradio_response_size_bytes', 'Size of responses in bytes')
CPU_USAGE = Gauge('system_cpu_usage_percent', 'System CPU usage in percent')
MEM_USAGE = Gauge('system_memory_usage_percent', 'System memory usage in percent')
QUEUE_LENGTH = Gauge('chat_queue_length', 'Length of the chat queue')
logging.debug("Prometheus metrics setup complete.")
except Exception as e:
logging.error(f"Error setting up Prometheus metrics: {e}")
# --- Queue and Metrics ---
chat_queue = Queue() # Define chat_queue globally
# --- Chat Function with Monitoring ---
def chat_function(index):
logging.debug("Starting chat_function")
with REQUEST_LATENCY.time():
REQUEST_COUNT.inc()
try:
chat_queue.put(index)
logging.info(f"Received index from user: {index}")
# Get the example from the dataset
example = dataset['train'][int(index)]
tokens = example['tokens']
ground_truth_labels = example['ner_tags']
logging.info(f"Tokens: {tokens}")
logging.info(f"Ground Truth Labels: {ground_truth_labels}")
# Predict using the model
ner_results = ner_pipeline(" ".join(tokens))
logging.debug(f"NER results: {ner_results}")
detailed_response = []
model_predicted_labels = []
for result in ner_results:
token = result['word']
score = result['score']
entity = result['entity']
label_id = int(entity.split('_')[-1]) # Extract numeric label from entity
model_predicted_labels.append(label_id)
detailed_response.append(f"Token: {token}, Entity: {entity}, Score: {score:.4f}")
response = "\n".join(detailed_response)
logging.info(f"Generated response: {response}")
response_size = len(response.encode('utf-8'))
RESPONSE_SIZE.observe(response_size)
time.sleep(random.uniform(0.5, 2.5)) # Simulate processing time
# Ensure the model and ground truth labels are the same length for comparison
model_predicted_labels = model_predicted_labels[:len(ground_truth_labels)]
precision = precision_score(ground_truth_labels, model_predicted_labels, average='weighted', zero_division=0)
recall = recall_score(ground_truth_labels, model_predicted_labels, average='weighted', zero_division=0)
f1 = f1_score(ground_truth_labels, model_predicted_labels, average='weighted', zero_division=0)
metrics_response = (f"Precision: {precision:.4f}\n"
f"Recall: {recall:.4f}\n"
f"F1 Score: {f1:.4f}")
full_response = f"{response}\n\nMetrics:\n{metrics_response}"
chat_queue.get()
logging.debug("Finished processing message")
return full_response
except Exception as e:
ERROR_COUNT.inc()
logging.error(f"Error in chat processing: {e}", exc_info=True)
return f"An error occurred. Please try again. Error: {e}"
# Function to simulate stress test
def stress_test(num_requests, index, delay):
def send_chat_message():
response = requests.post("http://127.0.0.1:7860/api/predict/", json={
"data": [index],
"fn_index": 0 # This might need to be updated based on your Gradio app's function index
})
logging.debug(response.json())
threads = []
for _ in range(num_requests):
t = threading.Thread(target=send_chat_message)
t.start()
threads.append(t)
time.sleep(delay) # Delay between requests
for t in threads:
t.join()
# --- Gradio Interface with Background Image and Three Windows ---
with gr.Blocks(css="""
body {
background-image: url("stag.jpeg");
background-size: cover;
background-repeat: no-repeat;
}
""", title="PLOD Filtered with Monitoring") as demo: # Load CSS for background image
with gr.Tab("Chat"):
gr.Markdown("## Chat with the Bot")
index_input = gr.Textbox(label="Enter dataset index:", lines=1)
output = gr.Textbox(label="Response", lines=20)
chat_interface = gr.Interface(fn=chat_function, inputs=[index_input], outputs=output)
chat_interface.render()
with gr.Tab("Model Parameters"):
model_params_display = gr.Textbox(label="Model Parameters", lines=20, interactive=False) # Display model parameters
with gr.Tab("Performance Metrics"):
request_count_display = gr.Number(label="Request Count", value=0)
avg_latency_display = gr.Number(label="Avg. Response Time (s)", value=0)
with gr.Tab("Infrastructure"):
cpu_usage_display = gr.Number(label="CPU Usage (%)", value=0)
mem_usage_display = gr.Number(label="Memory Usage (%)", value=0)
with gr.Tab("Logs"):
logs_display = gr.Textbox(label="Logs", lines=10) # Increased lines for better visibility
with gr.Tab("Stress Testing"):
num_requests_input = gr.Number(label="Number of Requests", value=10)
index_input_stress = gr.Textbox(label="Dataset Index", value="2")
delay_input = gr.Number(label="Delay Between Requests (seconds)", value=0.1)
stress_test_button = gr.Button("Start Stress Test")
stress_test_status = gr.Textbox(label="Stress Test Status", lines=5, interactive=False)
def run_stress_test(num_requests, index, delay):
stress_test_status.value = "Stress test started..."
try:
stress_test(num_requests, index, delay)
stress_test_status.value = "Stress test completed."
except Exception as e:
stress_test_status.value = f"Stress test failed: {e}"
stress_test_button.click(run_stress_test, [num_requests_input, index_input_stress, delay_input], stress_test_status)
# --- Update Functions ---
def update_metrics(request_count_display, avg_latency_display):
while True:
request_count = REQUEST_COUNT._value.get()
latency_samples = REQUEST_LATENCY.collect()[0].samples
avg_latency = sum(s.value for s in latency_samples) / len(latency_samples if latency_samples else [1]) # Avoid division by zero
request_count_display.value = request_count
avg_latency_display.value = round(avg_latency, 2)
time.sleep(5) # Update every 5 seconds
def update_usage(cpu_usage_display, mem_usage_display):
while True:
cpu_usage_display.value = psutil.cpu_percent()
mem_usage_display.value = psutil.virtual_memory().percent
CPU_USAGE.set(psutil.cpu_percent())
MEM_USAGE.set(psutil.virtual_memory().percent)
time.sleep(5)
def update_logs(logs_display):
while True:
with open(log_file, "r") as log_file_handler:
logs = log_file_handler.readlines()
logs_display.value = "".join(logs[-10:]) # Display last 10 lines
time.sleep(1) # Update every 1 second
def display_model_params(model_params_display):
while True:
model_params = ner_pipeline.model.config.to_dict()
model_params_str = "\n".join(f"{key}: {value}" for key, value in model_params.items())
model_params_display.value = model_params_str
time.sleep(10) # Update every 10 seconds
def update_queue_length():
while True:
QUEUE_LENGTH.set(chat_queue.qsize())
time.sleep(1) # Update every second
# --- Start Threads ---
threading.Thread(target=start_http_server, args=(8000,), daemon=True).start()
threading.Thread(target=update_metrics, args=(request_count_display, avg_latency_display), daemon=True).start()
threading.Thread(target=update_usage, args=(cpu_usage_display, mem_usage_display), daemon=True).start()
threading.Thread(target=update_logs, args=(logs_display,), daemon=True).start()
threading.Thread(target=display_model_params, args=(model_params_display,), daemon=True).start()
threading.Thread(target=update_queue_length, daemon=True).start()
# Launch the app
demo.launch(share=True)
|