|
|
|
import torch |
|
import torch.nn as nn |
|
import torchvision.transforms as transforms |
|
from torch.autograd import Variable |
|
from util.feature_extraction_utils import warp_image, normalize_batch |
|
from util.prepare_utils import get_ensemble, extract_features |
|
from lpips_pytorch import LPIPS |
|
from tqdm import trange |
|
|
|
tensor_transform = transforms.ToTensor() |
|
pil_transform = transforms.ToPILImage() |
|
|
|
|
|
class Attack(nn.Module): |
|
def __init__( |
|
self, |
|
models, |
|
dim, |
|
attack_type, |
|
eps, |
|
c_sim=0.5, |
|
net_type="alex", |
|
lr=0.05, |
|
n_iters=100, |
|
noise_size=0.001, |
|
n_starts=10, |
|
c_tv=None, |
|
sigma_gf=None, |
|
kernel_size_gf=None, |
|
combination=False, |
|
warp=False, |
|
theta_warp=None, |
|
V_reduction=None, |
|
): |
|
super(Attack, self).__init__() |
|
self.extractor_ens = get_ensemble( |
|
models, sigma_gf, kernel_size_gf, combination, V_reduction, warp, theta_warp |
|
) |
|
|
|
self.dim = dim |
|
self.eps = eps |
|
self.c_sim = c_sim |
|
self.net_type = net_type |
|
self.lr = lr |
|
self.n_iters = n_iters |
|
self.noise_size = noise_size |
|
self.n_starts = n_starts |
|
self.c_tv = None |
|
self.attack_type = attack_type |
|
self.warp = warp |
|
self.theta_warp = theta_warp |
|
if self.attack_type == "lpips": |
|
self.lpips_loss = LPIPS(self.net_type) |
|
|
|
def execute(self, images, dir_vec, direction): |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
print("Device in Excute:", device) |
|
self.lpips_loss.to(device) |
|
images = Variable(images).to(device) |
|
dir_vec = dir_vec.to(device) |
|
|
|
dir_vec_norm = dir_vec.norm(dim=2).unsqueeze(2).to(device) |
|
dist = torch.zeros(images.shape[0]).to(device) |
|
adv_images = images.detach().clone() |
|
|
|
if self.warp: |
|
self.face_img = warp_image(images, self.theta_warp) |
|
|
|
for start in range(self.n_starts): |
|
|
|
adv_images_old = adv_images.detach().clone() |
|
dist_old = dist.clone() |
|
|
|
noise_uniform = Variable( |
|
2 * self.noise_size * torch.rand(images.size()) - self.noise_size |
|
).to(device) |
|
adv_images = Variable( |
|
images.detach().clone() + noise_uniform, requires_grad=True |
|
).to(device) |
|
|
|
for i in trange(self.n_iters): |
|
adv_features = extract_features( |
|
adv_images, self.extractor_ens, self.dim |
|
).to(device) |
|
|
|
loss = direction * torch.mean( |
|
(adv_features - dir_vec) ** 2 / dir_vec_norm |
|
) |
|
|
|
if self.c_tv is not None: |
|
tv_out = self.total_var_reg(images, adv_images) |
|
loss -= self.c_tv * tv_out |
|
|
|
if self.attack_type == "lpips": |
|
lpips_out = self.lpips_reg(images, adv_images) |
|
loss -= self.c_sim * lpips_out |
|
|
|
grad = torch.autograd.grad(loss, [adv_images]) |
|
adv_images = adv_images + self.lr * grad[0].sign() |
|
perturbation = adv_images - images |
|
|
|
if self.attack_type == "sgd": |
|
perturbation = torch.clamp( |
|
perturbation, min=-self.eps, max=self.eps |
|
) |
|
adv_images = images + perturbation |
|
|
|
adv_images = torch.clamp(adv_images, min=0, max=1) |
|
adv_features = extract_features( |
|
adv_images, self.extractor_ens, self.dim |
|
).to(device) |
|
dist = torch.mean((adv_features - dir_vec) ** 2 / dir_vec_norm, dim=[1, 2]) |
|
|
|
if direction == 1: |
|
adv_images[dist < dist_old] = adv_images_old[dist < dist_old] |
|
dist[dist < dist_old] = dist_old[dist < dist_old] |
|
else: |
|
adv_images[dist > dist_old] = adv_images_old[dist > dist_old] |
|
dist[dist > dist_old] = dist_old[dist > dist_old] |
|
return adv_images.detach().cpu() |
|
|
|
def lpips_reg(self, images, adv_images): |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
if self.warp: |
|
face_adv = warp_image(adv_images, self.theta_warp) |
|
lpips_out = self.lpips_loss( |
|
normalize_batch(self.face_img).to(device), |
|
normalize_batch(face_adv).to(device), |
|
)[0][0][0][0] / (2 * adv_images.shape[0]) |
|
lpips_out += self.lpips_loss( |
|
normalize_batch(images).to(device), |
|
normalize_batch(adv_images).to(device), |
|
)[0][0][0][0] / (2 * adv_images.shape[0]) |
|
|
|
else: |
|
lpips_out = ( |
|
self.lpips_loss( |
|
normalize_batch(images).to(device), |
|
normalize_batch(adv_images).to(device), |
|
)[0][0][0][0] |
|
/ adv_images.shape[0] |
|
) |
|
|
|
return lpips_out |
|
|
|
def total_var_reg(images, adv_images): |
|
perturbation = adv_images - images |
|
tv = torch.mean( |
|
torch.abs(perturbation[:, :, :, :-1] - perturbation[:, :, :, 1:]) |
|
) + torch.mean( |
|
torch.abs(perturbation[:, :, :-1, :] - perturbation[:, :, 1:, :]) |
|
) |
|
|
|
return tv |
|
|