Tony Lian commited on
Commit
a55a1c5
·
1 Parent(s): f1f8842

Update the gradio layouts

Browse files
Files changed (47) hide show
  1. README.md +1 -1
  2. app.py +17 -25
  3. gradio_cached_examples/15/log.csv +5 -5
  4. gradio_cached_examples/39/Generated image/0a6be0bd-cbca-430f-b8ea-5ec8a0cf32f4/19eecb28178a417970470d31103e86f52a1079b6/image.png +0 -0
  5. gradio_cached_examples/39/Generated image/0a6be0bd-cbca-430f-b8ea-5ec8a0cf32f4/captions.json +0 -1
  6. gradio_cached_examples/39/Generated image/32ac0e0e-135a-404c-a1ee-53fdbc919db6/6e96ae22067936bf00a4f9f9415775f561fd0152/image.png +0 -0
  7. gradio_cached_examples/39/Generated image/32ac0e0e-135a-404c-a1ee-53fdbc919db6/captions.json +1 -0
  8. gradio_cached_examples/39/Generated image/5541f42f-a5c4-4c90-ae9c-389d0f0ea11a/captions.json +1 -0
  9. gradio_cached_examples/39/Generated image/5541f42f-a5c4-4c90-ae9c-389d0f0ea11a/e8933d4d2aff4203da4600fd6eb763a04c8667ff/image.png +0 -0
  10. gradio_cached_examples/39/Generated image/5818e92b-be12-44af-a000-022499aab645/72788356baeec6ff0f3614c57621d60a801b6a7f/image.png +0 -0
  11. gradio_cached_examples/39/Generated image/5818e92b-be12-44af-a000-022499aab645/captions.json +0 -1
  12. gradio_cached_examples/39/Generated image/7dbf49b5-a987-4285-9ecb-899fc0897489/1ba27d75ea6c232428e503a0336d8eb3c346c0b3/image.png +0 -0
  13. gradio_cached_examples/39/Generated image/7dbf49b5-a987-4285-9ecb-899fc0897489/captions.json +1 -0
  14. gradio_cached_examples/39/Generated image/92613514-ef71-44f5-807d-84a494dedeb1/672846c3033c99ea94199567efdb1955ee5ab7ce/image.png +0 -0
  15. gradio_cached_examples/39/Generated image/92613514-ef71-44f5-807d-84a494dedeb1/captions.json +0 -1
  16. gradio_cached_examples/39/Generated image/ae08bef2-f889-441a-ba1e-026445bb386a/1a312139177423e79631a7bf40aa1ac531efb744/image.png +0 -0
  17. gradio_cached_examples/39/Generated image/ae08bef2-f889-441a-ba1e-026445bb386a/captions.json +1 -0
  18. gradio_cached_examples/39/Generated image/c048f5e9-7f96-4da7-823d-3a898a4eac92/57a1c5b1ccb262cea6f1ae86fa5e70c89d379a6f/image.png +0 -0
  19. gradio_cached_examples/39/Generated image/c048f5e9-7f96-4da7-823d-3a898a4eac92/captions.json +0 -1
  20. gradio_cached_examples/39/Generated image/d216beac-010e-4466-856c-9d92e471654c/90a51edff815fd0aaef1864d6784583e800be8d8/image.png +0 -0
  21. gradio_cached_examples/39/Generated image/d216beac-010e-4466-856c-9d92e471654c/captions.json +1 -0
  22. gradio_cached_examples/39/Generated image/e05fc15c-d202-4cb4-b235-6b48d03ef03b/8821c44e2875b2e5fd9d9173c6b6bf6a5267be08/image.png +0 -0
  23. gradio_cached_examples/39/Generated image/e05fc15c-d202-4cb4-b235-6b48d03ef03b/captions.json +0 -1
  24. gradio_cached_examples/39/log.csv +5 -5
  25. gradio_cached_examples/49/Generated image/569b2539-1b09-422e-8f04-28e85cb5ce6b/79b47dee4bf06f02baaddf31631dadf4f0a77b1b/image.png +0 -0
  26. gradio_cached_examples/49/Generated image/569b2539-1b09-422e-8f04-28e85cb5ce6b/captions.json +1 -0
  27. gradio_cached_examples/49/Generated image/7ca4de19-dacd-433a-9bda-44a30411773a/captions.json +1 -0
  28. gradio_cached_examples/49/Generated image/7ca4de19-dacd-433a-9bda-44a30411773a/da41c41cef06d8895f87bd51bccacb9e5ee6fc13/image.png +0 -0
  29. gradio_cached_examples/49/Generated image/9d74cf63-2741-4aa1-9b9d-284ce36b1272/916b46e1b9e7e59a0f42ea2e0e9d3ac2077ddb29/image.png +0 -0
  30. gradio_cached_examples/49/Generated image/9d74cf63-2741-4aa1-9b9d-284ce36b1272/captions.json +1 -0
  31. gradio_cached_examples/49/Generated image/d1cff19c-eda7-411a-97bd-598780ee1514/111213a2bec11fbeb98d5cf421ff3f1e90ac2a6f/image.png +0 -0
  32. gradio_cached_examples/49/Generated image/d1cff19c-eda7-411a-97bd-598780ee1514/captions.json +1 -0
  33. gradio_cached_examples/49/Generated image/ff249b87-f078-4ed7-b702-d9c026c2ae0b/30ac54337ceb5917e94befaaa6939bdb2970ea50/image.png +0 -0
  34. gradio_cached_examples/49/Generated image/ff249b87-f078-4ed7-b702-d9c026c2ae0b/captions.json +1 -0
  35. gradio_cached_examples/49/log.csv +6 -0
  36. gradio_cached_examples/51/Generated image/52711207-5d80-4eb1-abd1-7ca09ae82f7d/91b5f67cc8cf5b4a8fd2aea741f4175606bbe7b5/image.png +0 -0
  37. gradio_cached_examples/51/Generated image/52711207-5d80-4eb1-abd1-7ca09ae82f7d/captions.json +0 -1
  38. gradio_cached_examples/51/Generated image/6a5728a0-b580-4114-8c1c-7a3313fcad79/6b704ebfdeabbdcc40397de5d1d12ab6e6c167a6/image.png +0 -0
  39. gradio_cached_examples/51/Generated image/6a5728a0-b580-4114-8c1c-7a3313fcad79/captions.json +0 -1
  40. gradio_cached_examples/51/Generated image/8e44d54e-7b4a-46ec-aacc-67ef88a61505/7778fc9077843c4de514cab097cc5ce9d689be7d/image.png +0 -0
  41. gradio_cached_examples/51/Generated image/8e44d54e-7b4a-46ec-aacc-67ef88a61505/captions.json +0 -1
  42. gradio_cached_examples/51/Generated image/98ce623d-5866-46ae-8e57-4690871fa04f/captions.json +0 -1
  43. gradio_cached_examples/51/Generated image/98ce623d-5866-46ae-8e57-4690871fa04f/da7f62f9d0ef44ec431cec8a80a9eabfea6794ab/image.png +0 -0
  44. gradio_cached_examples/51/Generated image/b9462897-294a-42b2-9cd6-89d348b707fc/5981833148e050fc2bbd906d2a91cc66a2782ac0/image.png +0 -0
  45. gradio_cached_examples/51/Generated image/b9462897-294a-42b2-9cd6-89d348b707fc/captions.json +0 -1
  46. gradio_cached_examples/51/log.csv +0 -6
  47. requirements.txt +1 -1
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 😊
4
  colorFrom: red
5
  colorTo: pink
6
  sdk: gradio
7
- sdk_version: 3.34.0
8
  app_file: app.py
9
  pinned: true
10
  tags: [llm, diffusion, grounding, grounded, llm-grounded, text-to-image, language, large language models, layout, generation, generative, customization, personalization, prompting, chatgpt, gpt-3.5, gpt-4]
 
4
  colorFrom: red
5
  colorTo: pink
6
  sdk: gradio
7
+ sdk_version: 3.35.2
8
  app_file: app.py
9
  pinned: true
10
  tags: [llm, diffusion, grounding, grounded, llm-grounded, text-to-image, language, large language models, layout, generation, generative, customization, personalization, prompting, chatgpt, gpt-3.5, gpt-4]
app.py CHANGED
@@ -202,9 +202,11 @@ html = f"""<h1>LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to
202
  <p>2. You can perform multi-round specification by giving ChatGPT follow-up requests (e.g., make the object boxes bigger).</p>
203
  <p>3. You can also try prompts in Simplified Chinese. If you want to try prompts in another language, translate the first line of last example to your language.</p>
204
  <p>4. The diffusion model only runs 20 steps by default. You can make it run 50 steps to get higher quality images (or tweak frozen steps/guidance steps for better guidance and coherence).</p>
205
- <p>5. Duplicate this space and add GPU to skip the queue and run our model faster. (Currently we are using a T4, and you can add a A10G to make it 5x faster) {duplicate_html}</p>
206
  <br/>
207
- <p>Implementation note: In this demo, we replace the attention manipulation in our layout-guided Stable Diffusion described in our paper with GLIGEN due to much faster inference speed (<b>FlashAttention supported, no backprop needed</b> during inference). Compared to vanilla GLIGEN, we have better coherence. Other parts of text-to-image pipeline, including single object generation and SAM, remain the same. The settings and examples in the prompt are simplified in this demo.</p>"""
 
 
208
 
209
  with gr.Blocks(
210
  title="LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image Diffusion Models with Large Language Models"
@@ -214,11 +216,11 @@ with gr.Blocks(
214
  with gr.Row():
215
  with gr.Column(scale=1):
216
  prompt = gr.Textbox(lines=2, label="Prompt for Layout Generation", placeholder=prompt_placeholder)
217
- generate_btn = gr.Button("Generate Prompt", variant='primary')
218
  with gr.Accordion("Advanced options", open=False):
219
  template = gr.Textbox(lines=10, label="Custom Template", placeholder="Customized Template", value=default_template)
220
  with gr.Column(scale=1):
221
- output = gr.Textbox(label="Paste this into ChatGPT (GPT-4 preferred; on Mac, click text and press Command+A and Command+C to copy all)")
222
  gr.HTML("<a href='https://chat.openai.com' target='_blank'>Click here to open ChatGPT</a>")
223
  generate_btn.click(fn=get_lmd_prompt, inputs=[prompt, template], outputs=output, api_name="get_lmd_prompt")
224
 
@@ -230,26 +232,15 @@ with gr.Blocks(
230
  cache_examples=True
231
  )
232
 
233
- # with gr.Tab("(Optional) Visualize ChatGPT-generated Layout"):
234
- # with gr.Row():
235
- # with gr.Column(scale=1):
236
- # response = gr.Textbox(lines=5, label="Paste ChatGPT response here", placeholder=layout_placeholder)
237
- # visualize_btn = gr.Button("Visualize Layout")
238
- # with gr.Column(scale=1):
239
- # output = gr.Image(shape=(512, 512), elem_classes="img", elem_id="img", css="img {width: 300px}")
240
- # visualize_btn.click(fn=get_layout_image, inputs=response, outputs=output, api_name="visualize-layout")
241
-
242
  with gr.Tab("Stage 2 (New). Layout to Image generation"):
243
  with gr.Row():
244
  with gr.Column(scale=1):
245
- response = gr.Textbox(lines=5, label="Paste ChatGPT response here (no original caption needed)", placeholder=layout_placeholder)
246
- visualize_btn = gr.Button("Visualize Layout")
247
- generate_btn = gr.Button("Generate Image from Layout", variant='primary')
248
  with gr.Accordion("Advanced options (play around for better generation)", open=False):
249
- overall_prompt_override = gr.Textbox(lines=2, label="Prompt for overall generation (you can put your input prompt for layout generation here, helpful if your scene cannot be represented by background prompt and boxes, such as with object interactions; if left empty: background prompt with [objects])", value="")
250
  frozen_step_ratio = gr.Slider(0, 1, value=0.4, step=0.1, label="Foreground frozen steps ratio (higher: preserve object attributes; lower: higher coherence; set to 0: (almost) equivalent to vanilla GLIGEN except details)")
251
  gligen_scheduled_sampling_beta = gr.Slider(0, 1, value=0.3, step=0.1, label="GLIGEN guidance steps ratio (the beta value)")
252
- seed = gr.Slider(0, 10000, value=0, step=1, label="Seed")
253
  num_inference_steps = gr.Slider(1, 50, value=20, step=1, label="Number of inference steps")
254
  dpm_scheduler = gr.Checkbox(label="Use DPM scheduler (unchecked: DDIM scheduler, may have better coherence, recommend 50 inference steps)", show_label=False, value=True)
255
  fg_seed_start = gr.Slider(0, 10000, value=20, step=1, label="Seed for foreground variation")
@@ -258,10 +249,12 @@ with gr.Blocks(
258
  overall_negative_prompt = gr.Textbox(lines=1, label="Negative prompt for overall generation", value=DEFAULT_OVERALL_NEGATIVE_PROMPT)
259
  show_so_imgs = gr.Checkbox(label="Show annotated single object generations", show_label=False, value=False)
260
  scale_boxes = gr.Checkbox(label="Scale bounding boxes to just fit the scene", show_label=False, value=False)
 
 
261
  with gr.Column(scale=1):
262
  gallery = gr.Gallery(
263
- label="Generated image", show_label=False, elem_id="gallery"
264
- ).style(columns=[1], rows=[1], object_fit="contain", preview=True)
265
  visualize_btn.click(fn=get_layout_image_gallery, inputs=response, outputs=gallery, api_name="visualize-layout")
266
  generate_btn.click(fn=get_ours_image, inputs=[response, seed, num_inference_steps, dpm_scheduler, overall_prompt_override, fg_seed_start, fg_blending_ratio, frozen_step_ratio, gligen_scheduled_sampling_beta, so_negative_prompt, overall_negative_prompt, show_so_imgs, scale_boxes], outputs=gallery, api_name="layout-to-image")
267
 
@@ -277,15 +270,14 @@ with gr.Blocks(
277
  with gr.Row():
278
  with gr.Column(scale=1):
279
  sd_prompt = gr.Textbox(lines=2, label="Prompt for baseline SD", placeholder=prompt_placeholder)
280
- generate_btn = gr.Button("Generate")
281
- with gr.Accordion("Advanced options", open=False):
282
- seed = gr.Slider(0, 10000, value=0, step=1, label="Seed")
283
  # with gr.Column(scale=1):
284
  # output = gr.Image(shape=(512, 512), elem_classes="img", elem_id="img")
285
  with gr.Column(scale=1):
286
  gallery = gr.Gallery(
287
- label="Generated image", show_label=False, elem_id="gallery2"
288
- ).style(columns=[1], rows=[1], object_fit="contain", preview=True)
289
  generate_btn.click(fn=get_baseline_image, inputs=[sd_prompt, seed], outputs=gallery, api_name="baseline")
290
 
291
  gr.Examples(
 
202
  <p>2. You can perform multi-round specification by giving ChatGPT follow-up requests (e.g., make the object boxes bigger).</p>
203
  <p>3. You can also try prompts in Simplified Chinese. If you want to try prompts in another language, translate the first line of last example to your language.</p>
204
  <p>4. The diffusion model only runs 20 steps by default. You can make it run 50 steps to get higher quality images (or tweak frozen steps/guidance steps for better guidance and coherence).</p>
205
+ <p>5. Duplicate this space and add GPU or clone the space and run locally to skip the queue and run our model faster. (Currently we are using a T4, and you can add a A10G to make it 5x faster) {duplicate_html}</p>
206
  <br/>
207
+ <p>Implementation note: In this demo, we replace the attention manipulation in our layout-guided Stable Diffusion described in our paper with GLIGEN due to much faster inference speed (<b>FlashAttention supported, no backprop needed</b> during inference). Compared to vanilla GLIGEN, we have better coherence. Other parts of text-to-image pipeline, including single object generation and SAM, remain the same. The settings and examples in the prompt are simplified in this demo.</p>
208
+ <style>.btn {{flex-grow: unset !important;}} </style>
209
+ """
210
 
211
  with gr.Blocks(
212
  title="LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image Diffusion Models with Large Language Models"
 
216
  with gr.Row():
217
  with gr.Column(scale=1):
218
  prompt = gr.Textbox(lines=2, label="Prompt for Layout Generation", placeholder=prompt_placeholder)
219
+ generate_btn = gr.Button("Generate Prompt", variant='primary', elem_classes="btn")
220
  with gr.Accordion("Advanced options", open=False):
221
  template = gr.Textbox(lines=10, label="Custom Template", placeholder="Customized Template", value=default_template)
222
  with gr.Column(scale=1):
223
+ output = gr.Textbox(label="Paste this into ChatGPT (GPT-4 preferred; on Mac, click text and press Command+A and Command+C to copy all)", show_copy_button=True)
224
  gr.HTML("<a href='https://chat.openai.com' target='_blank'>Click here to open ChatGPT</a>")
225
  generate_btn.click(fn=get_lmd_prompt, inputs=[prompt, template], outputs=output, api_name="get_lmd_prompt")
226
 
 
232
  cache_examples=True
233
  )
234
 
 
 
 
 
 
 
 
 
 
235
  with gr.Tab("Stage 2 (New). Layout to Image generation"):
236
  with gr.Row():
237
  with gr.Column(scale=1):
238
+ response = gr.Textbox(lines=8, label="Paste ChatGPT response here (no original caption needed)", placeholder=layout_placeholder)
239
+ overall_prompt_override = gr.Textbox(lines=2, label="Prompt for overall generation (optional but recommended)", placeholder="You can put your input prompt for layout generation here, helpful if your scene cannot be represented by background prompt and boxes only, e.g., with object interactions. If left empty: background prompt with [objects].", value="")
240
+ seed = gr.Slider(0, 10000, value=0, step=1, label="Seed")
241
  with gr.Accordion("Advanced options (play around for better generation)", open=False):
 
242
  frozen_step_ratio = gr.Slider(0, 1, value=0.4, step=0.1, label="Foreground frozen steps ratio (higher: preserve object attributes; lower: higher coherence; set to 0: (almost) equivalent to vanilla GLIGEN except details)")
243
  gligen_scheduled_sampling_beta = gr.Slider(0, 1, value=0.3, step=0.1, label="GLIGEN guidance steps ratio (the beta value)")
 
244
  num_inference_steps = gr.Slider(1, 50, value=20, step=1, label="Number of inference steps")
245
  dpm_scheduler = gr.Checkbox(label="Use DPM scheduler (unchecked: DDIM scheduler, may have better coherence, recommend 50 inference steps)", show_label=False, value=True)
246
  fg_seed_start = gr.Slider(0, 10000, value=20, step=1, label="Seed for foreground variation")
 
249
  overall_negative_prompt = gr.Textbox(lines=1, label="Negative prompt for overall generation", value=DEFAULT_OVERALL_NEGATIVE_PROMPT)
250
  show_so_imgs = gr.Checkbox(label="Show annotated single object generations", show_label=False, value=False)
251
  scale_boxes = gr.Checkbox(label="Scale bounding boxes to just fit the scene", show_label=False, value=False)
252
+ visualize_btn = gr.Button("Visualize Layout", elem_classes="btn")
253
+ generate_btn = gr.Button("Generate Image from Layout", variant='primary', elem_classes="btn")
254
  with gr.Column(scale=1):
255
  gallery = gr.Gallery(
256
+ label="Generated image", show_label=False, elem_id="gallery", columns=[1], rows=[1], object_fit="contain", preview=True
257
+ )
258
  visualize_btn.click(fn=get_layout_image_gallery, inputs=response, outputs=gallery, api_name="visualize-layout")
259
  generate_btn.click(fn=get_ours_image, inputs=[response, seed, num_inference_steps, dpm_scheduler, overall_prompt_override, fg_seed_start, fg_blending_ratio, frozen_step_ratio, gligen_scheduled_sampling_beta, so_negative_prompt, overall_negative_prompt, show_so_imgs, scale_boxes], outputs=gallery, api_name="layout-to-image")
260
 
 
270
  with gr.Row():
271
  with gr.Column(scale=1):
272
  sd_prompt = gr.Textbox(lines=2, label="Prompt for baseline SD", placeholder=prompt_placeholder)
273
+ seed = gr.Slider(0, 10000, value=0, step=1, label="Seed")
274
+ generate_btn = gr.Button("Generate", elem_classes="btn")
 
275
  # with gr.Column(scale=1):
276
  # output = gr.Image(shape=(512, 512), elem_classes="img", elem_id="img")
277
  with gr.Column(scale=1):
278
  gallery = gr.Gallery(
279
+ label="Generated image", show_label=False, elem_id="gallery2", columns=[1], rows=[1], object_fit="contain", preview=True
280
+ )
281
  generate_btn.click(fn=get_baseline_image, inputs=[sd_prompt, seed], outputs=gallery, api_name="baseline")
282
 
283
  gr.Examples(
gradio_cached_examples/15/log.csv CHANGED
@@ -30,7 +30,7 @@ Objects: [('a tv', [88, 85, 335, 203]), ('a cabinet', [57, 308, 404, 201]), ('a
30
  Background prompt: An oil painting of a living room scene
31
 
32
  Caption: A realistic photo of a gray cat and an orange dog on the grass.
33
- Objects: ",,,2023-06-15 12:05:24.528652
34
  "You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene. The images are of size 512x512, and the bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object. Make the boxes larger if possible. Do not put objects that are already provided in the bounding boxes into the background prompt. If needed, you can make reasonable guesses. Generate the object descriptions and background prompts in English even if the caption might not be in English. Do not include non-existing or excluded objects in the background prompt. Please refer to the example below for the desired format.
35
 
36
  Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky
@@ -62,7 +62,7 @@ Objects: [('a tv', [88, 85, 335, 203]), ('a cabinet', [57, 308, 404, 201]), ('a
62
  Background prompt: An oil painting of a living room scene
63
 
64
  Caption: In an indoor scene, a blue cube directly above a red cube with a vase on the left of them.
65
- Objects: ",,,2023-06-15 12:05:24.529323
66
  "You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene. The images are of size 512x512, and the bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object. Make the boxes larger if possible. Do not put objects that are already provided in the bounding boxes into the background prompt. If needed, you can make reasonable guesses. Generate the object descriptions and background prompts in English even if the caption might not be in English. Do not include non-existing or excluded objects in the background prompt. Please refer to the example below for the desired format.
67
 
68
  Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky
@@ -94,7 +94,7 @@ Objects: [('a tv', [88, 85, 335, 203]), ('a cabinet', [57, 308, 404, 201]), ('a
94
  Background prompt: An oil painting of a living room scene
95
 
96
  Caption: A realistic photo of a wooden table without bananas in an indoor scene
97
- Objects: ",,,2023-06-15 12:05:24.529876
98
  "You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene. The images are of size 512x512, and the bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object. Make the boxes larger if possible. Do not put objects that are already provided in the bounding boxes into the background prompt. If needed, you can make reasonable guesses. Generate the object descriptions and background prompts in English even if the caption might not be in English. Do not include non-existing or excluded objects in the background prompt. Please refer to the example below for the desired format.
99
 
100
  Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky
@@ -126,7 +126,7 @@ Objects: [('a tv', [88, 85, 335, 203]), ('a cabinet', [57, 308, 404, 201]), ('a
126
  Background prompt: An oil painting of a living room scene
127
 
128
  Caption: A man in red is standing next to another woman in blue in the mountains.
129
- Objects: ",,,2023-06-15 12:05:24.530394
130
  "You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene. The images are of size 512x512, and the bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object. Make the boxes larger if possible. Do not put objects that are already provided in the bounding boxes into the background prompt. If needed, you can make reasonable guesses. Generate the object descriptions and background prompts in English even if the caption might not be in English. Do not include non-existing or excluded objects in the background prompt. Please refer to the example below for the desired format.
131
 
132
  Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky
@@ -158,4 +158,4 @@ Objects: [('a tv', [88, 85, 335, 203]), ('a cabinet', [57, 308, 404, 201]), ('a
158
  Background prompt: An oil painting of a living room scene
159
 
160
  Caption: 一个室内场景的水彩画,一个桌子上面放着一盘水果
161
- Objects: ",,,2023-06-15 12:05:24.530906
 
30
  Background prompt: An oil painting of a living room scene
31
 
32
  Caption: A realistic photo of a gray cat and an orange dog on the grass.
33
+ Objects: ",,,2023-06-19 12:19:18.120678
34
  "You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene. The images are of size 512x512, and the bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object. Make the boxes larger if possible. Do not put objects that are already provided in the bounding boxes into the background prompt. If needed, you can make reasonable guesses. Generate the object descriptions and background prompts in English even if the caption might not be in English. Do not include non-existing or excluded objects in the background prompt. Please refer to the example below for the desired format.
35
 
36
  Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky
 
62
  Background prompt: An oil painting of a living room scene
63
 
64
  Caption: In an indoor scene, a blue cube directly above a red cube with a vase on the left of them.
65
+ Objects: ",,,2023-06-19 12:19:18.121279
66
  "You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene. The images are of size 512x512, and the bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object. Make the boxes larger if possible. Do not put objects that are already provided in the bounding boxes into the background prompt. If needed, you can make reasonable guesses. Generate the object descriptions and background prompts in English even if the caption might not be in English. Do not include non-existing or excluded objects in the background prompt. Please refer to the example below for the desired format.
67
 
68
  Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky
 
94
  Background prompt: An oil painting of a living room scene
95
 
96
  Caption: A realistic photo of a wooden table without bananas in an indoor scene
97
+ Objects: ",,,2023-06-19 12:19:18.121771
98
  "You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene. The images are of size 512x512, and the bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object. Make the boxes larger if possible. Do not put objects that are already provided in the bounding boxes into the background prompt. If needed, you can make reasonable guesses. Generate the object descriptions and background prompts in English even if the caption might not be in English. Do not include non-existing or excluded objects in the background prompt. Please refer to the example below for the desired format.
99
 
100
  Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky
 
126
  Background prompt: An oil painting of a living room scene
127
 
128
  Caption: A man in red is standing next to another woman in blue in the mountains.
129
+ Objects: ",,,2023-06-19 12:19:18.122219
130
  "You are an intelligent bounding box generator. I will provide you with a caption for a photo, image, or painting. Your task is to generate the bounding boxes for the objects mentioned in the caption, along with a background prompt describing the scene. The images are of size 512x512, and the bounding boxes should not overlap or go beyond the image boundaries. Each bounding box should be in the format of (object name, [top-left x coordinate, top-left y coordinate, box width, box height]) and include exactly one object. Make the boxes larger if possible. Do not put objects that are already provided in the bounding boxes into the background prompt. If needed, you can make reasonable guesses. Generate the object descriptions and background prompts in English even if the caption might not be in English. Do not include non-existing or excluded objects in the background prompt. Please refer to the example below for the desired format.
131
 
132
  Caption: A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky
 
158
  Background prompt: An oil painting of a living room scene
159
 
160
  Caption: 一个室内场景的水彩画,一个桌子上面放着一盘水果
161
+ Objects: ",,,2023-06-19 12:19:18.122722
gradio_cached_examples/39/Generated image/0a6be0bd-cbca-430f-b8ea-5ec8a0cf32f4/19eecb28178a417970470d31103e86f52a1079b6/image.png DELETED
Binary file (376 kB)
 
gradio_cached_examples/39/Generated image/0a6be0bd-cbca-430f-b8ea-5ec8a0cf32f4/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/39/Generated image/0a6be0bd-cbca-430f-b8ea-5ec8a0cf32f4/19eecb28178a417970470d31103e86f52a1079b6/image.png": null}
 
 
gradio_cached_examples/39/Generated image/32ac0e0e-135a-404c-a1ee-53fdbc919db6/6e96ae22067936bf00a4f9f9415775f561fd0152/image.png ADDED
gradio_cached_examples/39/Generated image/32ac0e0e-135a-404c-a1ee-53fdbc919db6/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/39/Generated image/32ac0e0e-135a-404c-a1ee-53fdbc919db6/6e96ae22067936bf00a4f9f9415775f561fd0152/image.png": null}
gradio_cached_examples/39/Generated image/5541f42f-a5c4-4c90-ae9c-389d0f0ea11a/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/39/Generated image/5541f42f-a5c4-4c90-ae9c-389d0f0ea11a/e8933d4d2aff4203da4600fd6eb763a04c8667ff/image.png": null}
gradio_cached_examples/39/Generated image/5541f42f-a5c4-4c90-ae9c-389d0f0ea11a/e8933d4d2aff4203da4600fd6eb763a04c8667ff/image.png ADDED
gradio_cached_examples/39/Generated image/5818e92b-be12-44af-a000-022499aab645/72788356baeec6ff0f3614c57621d60a801b6a7f/image.png DELETED
Binary file (495 kB)
 
gradio_cached_examples/39/Generated image/5818e92b-be12-44af-a000-022499aab645/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/39/Generated image/5818e92b-be12-44af-a000-022499aab645/72788356baeec6ff0f3614c57621d60a801b6a7f/image.png": null}
 
 
gradio_cached_examples/39/Generated image/7dbf49b5-a987-4285-9ecb-899fc0897489/1ba27d75ea6c232428e503a0336d8eb3c346c0b3/image.png ADDED
gradio_cached_examples/39/Generated image/7dbf49b5-a987-4285-9ecb-899fc0897489/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/39/Generated image/7dbf49b5-a987-4285-9ecb-899fc0897489/1ba27d75ea6c232428e503a0336d8eb3c346c0b3/image.png": null}
gradio_cached_examples/39/Generated image/92613514-ef71-44f5-807d-84a494dedeb1/672846c3033c99ea94199567efdb1955ee5ab7ce/image.png DELETED
Binary file (500 kB)
 
gradio_cached_examples/39/Generated image/92613514-ef71-44f5-807d-84a494dedeb1/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/39/Generated image/92613514-ef71-44f5-807d-84a494dedeb1/672846c3033c99ea94199567efdb1955ee5ab7ce/image.png": null}
 
 
gradio_cached_examples/39/Generated image/ae08bef2-f889-441a-ba1e-026445bb386a/1a312139177423e79631a7bf40aa1ac531efb744/image.png ADDED
gradio_cached_examples/39/Generated image/ae08bef2-f889-441a-ba1e-026445bb386a/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/39/Generated image/ae08bef2-f889-441a-ba1e-026445bb386a/1a312139177423e79631a7bf40aa1ac531efb744/image.png": null}
gradio_cached_examples/39/Generated image/c048f5e9-7f96-4da7-823d-3a898a4eac92/57a1c5b1ccb262cea6f1ae86fa5e70c89d379a6f/image.png DELETED
Binary file (572 kB)
 
gradio_cached_examples/39/Generated image/c048f5e9-7f96-4da7-823d-3a898a4eac92/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/39/Generated image/c048f5e9-7f96-4da7-823d-3a898a4eac92/57a1c5b1ccb262cea6f1ae86fa5e70c89d379a6f/image.png": null}
 
 
gradio_cached_examples/39/Generated image/d216beac-010e-4466-856c-9d92e471654c/90a51edff815fd0aaef1864d6784583e800be8d8/image.png ADDED
gradio_cached_examples/39/Generated image/d216beac-010e-4466-856c-9d92e471654c/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/39/Generated image/d216beac-010e-4466-856c-9d92e471654c/90a51edff815fd0aaef1864d6784583e800be8d8/image.png": null}
gradio_cached_examples/39/Generated image/e05fc15c-d202-4cb4-b235-6b48d03ef03b/8821c44e2875b2e5fd9d9173c6b6bf6a5267be08/image.png DELETED
Binary file (580 kB)
 
gradio_cached_examples/39/Generated image/e05fc15c-d202-4cb4-b235-6b48d03ef03b/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/39/Generated image/e05fc15c-d202-4cb4-b235-6b48d03ef03b/8821c44e2875b2e5fd9d9173c6b6bf6a5267be08/image.png": null}
 
 
gradio_cached_examples/39/log.csv CHANGED
@@ -1,6 +1,6 @@
1
  Generated image,flag,username,timestamp
2
- ./gradio_cached_examples/39/Generated image/e05fc15c-d202-4cb4-b235-6b48d03ef03b,,,2023-06-15 12:05:31.035765
3
- ./gradio_cached_examples/39/Generated image/92613514-ef71-44f5-807d-84a494dedeb1,,,2023-06-15 12:05:36.136151
4
- ./gradio_cached_examples/39/Generated image/0a6be0bd-cbca-430f-b8ea-5ec8a0cf32f4,,,2023-06-15 12:05:43.006787
5
- ./gradio_cached_examples/39/Generated image/5818e92b-be12-44af-a000-022499aab645,,,2023-06-15 12:05:46.365679
6
- ./gradio_cached_examples/39/Generated image/c048f5e9-7f96-4da7-823d-3a898a4eac92,,,2023-06-15 12:05:51.459497
 
1
  Generated image,flag,username,timestamp
2
+ ./gradio_cached_examples/39/Generated image/ae08bef2-f889-441a-ba1e-026445bb386a,,,2023-06-19 12:19:24.628285
3
+ ./gradio_cached_examples/39/Generated image/7dbf49b5-a987-4285-9ecb-899fc0897489,,,2023-06-19 12:19:29.717383
4
+ ./gradio_cached_examples/39/Generated image/d216beac-010e-4466-856c-9d92e471654c,,,2023-06-19 12:19:36.564223
5
+ ./gradio_cached_examples/39/Generated image/5541f42f-a5c4-4c90-ae9c-389d0f0ea11a,,,2023-06-19 12:19:39.911724
6
+ ./gradio_cached_examples/39/Generated image/32ac0e0e-135a-404c-a1ee-53fdbc919db6,,,2023-06-19 12:19:44.983434
gradio_cached_examples/49/Generated image/569b2539-1b09-422e-8f04-28e85cb5ce6b/79b47dee4bf06f02baaddf31631dadf4f0a77b1b/image.png ADDED
gradio_cached_examples/49/Generated image/569b2539-1b09-422e-8f04-28e85cb5ce6b/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/49/Generated image/569b2539-1b09-422e-8f04-28e85cb5ce6b/79b47dee4bf06f02baaddf31631dadf4f0a77b1b/image.png": null}
gradio_cached_examples/49/Generated image/7ca4de19-dacd-433a-9bda-44a30411773a/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/49/Generated image/7ca4de19-dacd-433a-9bda-44a30411773a/da41c41cef06d8895f87bd51bccacb9e5ee6fc13/image.png": null}
gradio_cached_examples/49/Generated image/7ca4de19-dacd-433a-9bda-44a30411773a/da41c41cef06d8895f87bd51bccacb9e5ee6fc13/image.png ADDED
gradio_cached_examples/49/Generated image/9d74cf63-2741-4aa1-9b9d-284ce36b1272/916b46e1b9e7e59a0f42ea2e0e9d3ac2077ddb29/image.png ADDED
gradio_cached_examples/49/Generated image/9d74cf63-2741-4aa1-9b9d-284ce36b1272/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/49/Generated image/9d74cf63-2741-4aa1-9b9d-284ce36b1272/916b46e1b9e7e59a0f42ea2e0e9d3ac2077ddb29/image.png": null}
gradio_cached_examples/49/Generated image/d1cff19c-eda7-411a-97bd-598780ee1514/111213a2bec11fbeb98d5cf421ff3f1e90ac2a6f/image.png ADDED
gradio_cached_examples/49/Generated image/d1cff19c-eda7-411a-97bd-598780ee1514/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/49/Generated image/d1cff19c-eda7-411a-97bd-598780ee1514/111213a2bec11fbeb98d5cf421ff3f1e90ac2a6f/image.png": null}
gradio_cached_examples/49/Generated image/ff249b87-f078-4ed7-b702-d9c026c2ae0b/30ac54337ceb5917e94befaaa6939bdb2970ea50/image.png ADDED
gradio_cached_examples/49/Generated image/ff249b87-f078-4ed7-b702-d9c026c2ae0b/captions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"./gradio_cached_examples/49/Generated image/ff249b87-f078-4ed7-b702-d9c026c2ae0b/30ac54337ceb5917e94befaaa6939bdb2970ea50/image.png": null}
gradio_cached_examples/49/log.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Generated image,flag,username,timestamp
2
+ ./gradio_cached_examples/49/Generated image/d1cff19c-eda7-411a-97bd-598780ee1514,,,2023-06-19 12:19:46.344457
3
+ ./gradio_cached_examples/49/Generated image/7ca4de19-dacd-433a-9bda-44a30411773a,,,2023-06-19 12:19:47.718673
4
+ ./gradio_cached_examples/49/Generated image/569b2539-1b09-422e-8f04-28e85cb5ce6b,,,2023-06-19 12:19:49.113759
5
+ ./gradio_cached_examples/49/Generated image/9d74cf63-2741-4aa1-9b9d-284ce36b1272,,,2023-06-19 12:19:50.442599
6
+ ./gradio_cached_examples/49/Generated image/ff249b87-f078-4ed7-b702-d9c026c2ae0b,,,2023-06-19 12:19:51.819811
gradio_cached_examples/51/Generated image/52711207-5d80-4eb1-abd1-7ca09ae82f7d/91b5f67cc8cf5b4a8fd2aea741f4175606bbe7b5/image.png DELETED
Binary file (477 kB)
 
gradio_cached_examples/51/Generated image/52711207-5d80-4eb1-abd1-7ca09ae82f7d/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/51/Generated image/52711207-5d80-4eb1-abd1-7ca09ae82f7d/91b5f67cc8cf5b4a8fd2aea741f4175606bbe7b5/image.png": null}
 
 
gradio_cached_examples/51/Generated image/6a5728a0-b580-4114-8c1c-7a3313fcad79/6b704ebfdeabbdcc40397de5d1d12ab6e6c167a6/image.png DELETED
Binary file (329 kB)
 
gradio_cached_examples/51/Generated image/6a5728a0-b580-4114-8c1c-7a3313fcad79/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/51/Generated image/6a5728a0-b580-4114-8c1c-7a3313fcad79/6b704ebfdeabbdcc40397de5d1d12ab6e6c167a6/image.png": null}
 
 
gradio_cached_examples/51/Generated image/8e44d54e-7b4a-46ec-aacc-67ef88a61505/7778fc9077843c4de514cab097cc5ce9d689be7d/image.png DELETED
Binary file (394 kB)
 
gradio_cached_examples/51/Generated image/8e44d54e-7b4a-46ec-aacc-67ef88a61505/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/51/Generated image/8e44d54e-7b4a-46ec-aacc-67ef88a61505/7778fc9077843c4de514cab097cc5ce9d689be7d/image.png": null}
 
 
gradio_cached_examples/51/Generated image/98ce623d-5866-46ae-8e57-4690871fa04f/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/51/Generated image/98ce623d-5866-46ae-8e57-4690871fa04f/da7f62f9d0ef44ec431cec8a80a9eabfea6794ab/image.png": null}
 
 
gradio_cached_examples/51/Generated image/98ce623d-5866-46ae-8e57-4690871fa04f/da7f62f9d0ef44ec431cec8a80a9eabfea6794ab/image.png DELETED
Binary file (343 kB)
 
gradio_cached_examples/51/Generated image/b9462897-294a-42b2-9cd6-89d348b707fc/5981833148e050fc2bbd906d2a91cc66a2782ac0/image.png DELETED
Binary file (519 kB)
 
gradio_cached_examples/51/Generated image/b9462897-294a-42b2-9cd6-89d348b707fc/captions.json DELETED
@@ -1 +0,0 @@
1
- {"./gradio_cached_examples/51/Generated image/b9462897-294a-42b2-9cd6-89d348b707fc/5981833148e050fc2bbd906d2a91cc66a2782ac0/image.png": null}
 
 
gradio_cached_examples/51/log.csv DELETED
@@ -1,6 +0,0 @@
1
- Generated image,flag,username,timestamp
2
- ./gradio_cached_examples/51/Generated image/52711207-5d80-4eb1-abd1-7ca09ae82f7d,,,2023-06-15 12:05:52.813792
3
- ./gradio_cached_examples/51/Generated image/6a5728a0-b580-4114-8c1c-7a3313fcad79,,,2023-06-15 12:05:54.185722
4
- ./gradio_cached_examples/51/Generated image/98ce623d-5866-46ae-8e57-4690871fa04f,,,2023-06-15 12:05:55.579429
5
- ./gradio_cached_examples/51/Generated image/b9462897-294a-42b2-9cd6-89d348b707fc,,,2023-06-15 12:05:56.908080
6
- ./gradio_cached_examples/51/Generated image/8e44d54e-7b4a-46ec-aacc-67ef88a61505,,,2023-06-15 12:05:58.282893
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -9,4 +9,4 @@ opencv-contrib-python==4.7.0.72
9
  inflect==6.0.4
10
  easydict
11
  accelerate==0.18.0
12
- gradio==3.34.0
 
9
  inflect==6.0.4
10
  easydict
11
  accelerate==0.18.0
12
+ gradio==3.35.2