File size: 12,475 Bytes
e096196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#!/usr/bin/env python
"""Unofficial demo app for https://github.com/cloneofsimo/lora.

The code in this repo is partly adapted from the following repository:
https://huggingface.co/spaces/multimodalart/dreambooth-training/tree/a00184917aa273c6d8adab08d5deb9b39b997938
The license of the original code is MIT, which is specified in the README.md.
"""

from __future__ import annotations

import os
import pathlib

import gradio as gr
import torch

from inference import InferencePipeline
from trainer import Trainer
from uploader import upload

TITLE = '# LoRA + StableDiffusion Training UI'
DESCRIPTION = 'This is an unofficial demo for [https://github.com/cloneofsimo/lora](https://github.com/cloneofsimo/lora).'

ORIGINAL_SPACE_ID = 'hysts/LoRA-SD-training'
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
SHARED_UI_WARNING = f'''# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.

<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
    SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'

else:
    SETTINGS = 'Settings'
CUDA_NOT_AVAILABLE_WARNING = f'''# Attention - Running on CPU.
<center>
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
"T4 small" is sufficient to run this demo.
</center>
'''


def show_warning(warning_text: str) -> gr.Blocks:
    with gr.Blocks() as demo:
        with gr.Box():
            gr.Markdown(warning_text)
    return demo


def update_output_files() -> dict:
    paths = sorted(pathlib.Path('results').glob('*.pt'))
    paths = [path.as_posix() for path in paths]  # type: ignore
    return gr.update(value=paths or None)


def create_training_demo(trainer: Trainer,
                         pipe: InferencePipeline) -> gr.Blocks:
    with gr.Blocks() as demo:
        base_model = gr.Dropdown(
            choices=['stabilityai/stable-diffusion-2-1-base'],
            value='stabilityai/stable-diffusion-2-1-base',
            label='Base Model',
            visible=False)
        resolution = gr.Dropdown(choices=['512'],
                                 value='512',
                                 label='Resolution',
                                 visible=False)

        with gr.Row():
            with gr.Box():
                gr.Markdown('Training Data')
                concept_images = gr.Files(label='Images for your concept')
                concept_prompt = gr.Textbox(label='Concept Prompt',
                                            max_lines=1)
                gr.Markdown('''
                    - Upload images of the style you are planning on training on.
                    - For a concept prompt, use a unique, made up word to avoid collisions.
                    ''')
            with gr.Box():
                gr.Markdown('Training Parameters')
                num_training_steps = gr.Number(
                    label='Number of Training Steps', value=1000, precision=0)
                learning_rate = gr.Number(label='Learning Rate', value=0.0001)
                train_text_encoder = gr.Checkbox(label='Train Text Encoder',
                                                 value=True)
                learning_rate_text = gr.Number(
                    label='Learning Rate for Text Encoder', value=0.00005)
                gradient_accumulation = gr.Number(
                    label='Number of Gradient Accumulation',
                    value=1,
                    precision=0)
                fp16 = gr.Checkbox(label='FP16', value=True)
                use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', value=True)
                gr.Markdown('''
                    - It will take about 8 minutes to train for 1000 steps with a T4 GPU.
                    - You may want to try a small number of steps first, like 1, to see if everything works fine in your environment.
                    - Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab.
                    ''')

        run_button = gr.Button('Start Training')
        with gr.Box():
            with gr.Row():
                check_status_button = gr.Button('Check Training Status')
                with gr.Column():
                    with gr.Box():
                        gr.Markdown('Message')
                        training_status = gr.Markdown()
                    output_files = gr.Files(label='Trained Weight Files')

        run_button.click(fn=pipe.clear)
        run_button.click(fn=trainer.run,
                         inputs=[
                             base_model,
                             resolution,
                             concept_images,
                             concept_prompt,
                             num_training_steps,
                             learning_rate,
                             train_text_encoder,
                             learning_rate_text,
                             gradient_accumulation,
                             fp16,
                             use_8bit_adam,
                         ],
                         outputs=[
                             training_status,
                             output_files,
                         ],
                         queue=False)
        check_status_button.click(fn=trainer.check_if_running,
                                  inputs=None,
                                  outputs=training_status,
                                  queue=False)
        check_status_button.click(fn=update_output_files,
                                  inputs=None,
                                  outputs=output_files,
                                  queue=False)
    return demo


def find_weight_files() -> list[str]:
    curr_dir = pathlib.Path(__file__).parent
    paths = sorted(curr_dir.rglob('*.pt'))
    paths = [path for path in paths if not path.stem.endswith('.text_encoder')]
    return [path.relative_to(curr_dir).as_posix() for path in paths]


def reload_lora_weight_list() -> dict:
    return gr.update(choices=find_weight_files())


def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                base_model = gr.Dropdown(
                    choices=['stabilityai/stable-diffusion-2-1-base'],
                    value='stabilityai/stable-diffusion-2-1-base',
                    label='Base Model',
                    visible=False)
                reload_button = gr.Button('Reload Weight List')
                lora_weight_name = gr.Dropdown(choices=find_weight_files(),
                                               value='lora/lora_disney.pt',
                                               label='LoRA Weight File')
                prompt = gr.Textbox(
                    label='Prompt',
                    max_lines=1,
                    placeholder='Example: "style of sks, baby lion"')
                alpha = gr.Slider(label='Alpha',
                                  minimum=0,
                                  maximum=2,
                                  step=0.05,
                                  value=1)
                alpha_for_text = gr.Slider(label='Alpha for Text Encoder',
                                           minimum=0,
                                           maximum=2,
                                           step=0.05,
                                           value=1)
                seed = gr.Slider(label='Seed',
                                 minimum=0,
                                 maximum=100000,
                                 step=1,
                                 value=1)
                with gr.Accordion('Other Parameters', open=False):
                    num_steps = gr.Slider(label='Number of Steps',
                                          minimum=0,
                                          maximum=100,
                                          step=1,
                                          value=50)
                    guidance_scale = gr.Slider(label='CFG Scale',
                                               minimum=0,
                                               maximum=50,
                                               step=0.1,
                                               value=7)

                run_button = gr.Button('Generate')

                gr.Markdown('''
                - Models with names starting with "lora/" are the pretrained models provided in the [original repo](https://github.com/cloneofsimo/lora), and the ones with names starting with "results/" are your trained models.
                - After training, you can press "Reload Weight List" button to load your trained model names.
                - The pretrained models for "disney", "illust" and "pop" are trained with the concept prompt "style of sks".
                - The pretrained model for "kiriko" is trained with the concept prompt "game character bnha". For this model, the text encoder is also trained.
                ''')
            with gr.Column():
                result = gr.Image(label='Result')

        reload_button.click(fn=reload_lora_weight_list,
                            inputs=None,
                            outputs=lora_weight_name)
        prompt.submit(fn=pipe.run,
                      inputs=[
                          base_model,
                          lora_weight_name,
                          prompt,
                          alpha,
                          alpha_for_text,
                          seed,
                          num_steps,
                          guidance_scale,
                      ],
                      outputs=result,
                      queue=False)
        run_button.click(fn=pipe.run,
                         inputs=[
                             base_model,
                             lora_weight_name,
                             prompt,
                             alpha,
                             alpha_for_text,
                             seed,
                             num_steps,
                             guidance_scale,
                         ],
                         outputs=result,
                         queue=False)
    return demo


def create_upload_demo() -> gr.Blocks:
    with gr.Blocks() as demo:
        model_name = gr.Textbox(label='Model Name')
        hf_token = gr.Textbox(
            label='Hugging Face Token (with write permission)')
        upload_button = gr.Button('Upload')
        with gr.Box():
            gr.Markdown('Message')
            result = gr.Markdown()
        gr.Markdown('''
            - You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}).
            - You can find your Hugging Face token [here](https://huggingface.co/settings/tokens).
            ''')

    upload_button.click(fn=upload,
                        inputs=[model_name, hf_token],
                        outputs=result)

    return demo


pipe = InferencePipeline()
trainer = Trainer()

with gr.Blocks(css='style.css') as demo:
    if os.getenv('IS_SHARED_UI'):
        show_warning(SHARED_UI_WARNING)
    if not torch.cuda.is_available():
        show_warning(CUDA_NOT_AVAILABLE_WARNING)

    gr.Markdown(TITLE)
    gr.Markdown(DESCRIPTION)

    with gr.Tabs():
        with gr.TabItem('Train'):
            create_training_demo(trainer, pipe)
        with gr.TabItem('Test'):
            create_inference_demo(pipe)
        with gr.TabItem('Upload'):
            create_upload_demo()

demo.queue(default_enabled=False).launch(share=False)