|
from __future__ import annotations |
|
|
|
import gc |
|
import pathlib |
|
import sys |
|
|
|
import gradio as gr |
|
import PIL.Image |
|
import torch |
|
from diffusers import StableDiffusionPipeline |
|
|
|
sys.path.insert(0, 'lora') |
|
from lora_diffusion import monkeypatch_lora, tune_lora_scale |
|
|
|
|
|
class InferencePipeline: |
|
def __init__(self): |
|
self.pipe = None |
|
self.device = torch.device( |
|
'cuda:0' if torch.cuda.is_available() else 'cpu') |
|
self.weight_path = None |
|
|
|
def clear(self) -> None: |
|
self.weight_path = None |
|
del self.pipe |
|
self.pipe = None |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
@staticmethod |
|
def get_lora_weight_path(name: str) -> pathlib.Path: |
|
curr_dir = pathlib.Path(__file__).parent |
|
return curr_dir / name |
|
|
|
@staticmethod |
|
def get_lora_text_encoder_weight_path(path: pathlib.Path) -> str: |
|
parent_dir = path.parent |
|
stem = path.stem |
|
text_encoder_filename = f'{stem}.text_encoder.pt' |
|
path = parent_dir / text_encoder_filename |
|
return path.as_posix() if path.exists() else '' |
|
|
|
def load_pipe(self, model_id: str, lora_filename: str) -> None: |
|
weight_path = self.get_lora_weight_path(lora_filename) |
|
if weight_path == self.weight_path: |
|
return |
|
self.weight_path = weight_path |
|
lora_weight = torch.load(self.weight_path, map_location=self.device) |
|
|
|
if self.device.type == 'cpu': |
|
pipe = StableDiffusionPipeline.from_pretrained(model_id) |
|
else: |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
model_id, torch_dtype=torch.float16) |
|
pipe = pipe.to(self.device) |
|
|
|
monkeypatch_lora(pipe.unet, lora_weight) |
|
|
|
lora_text_encoder_weight_path = self.get_lora_text_encoder_weight_path( |
|
weight_path) |
|
if lora_text_encoder_weight_path: |
|
lora_text_encoder_weight = torch.load( |
|
lora_text_encoder_weight_path, map_location=self.device) |
|
monkeypatch_lora(pipe.text_encoder, |
|
lora_text_encoder_weight, |
|
target_replace_module=['CLIPAttention']) |
|
|
|
self.pipe = pipe |
|
|
|
def run( |
|
self, |
|
base_model: str, |
|
lora_weight_name: str, |
|
prompt: str, |
|
alpha: float, |
|
alpha_for_text: float, |
|
seed: int, |
|
n_steps: int, |
|
guidance_scale: float, |
|
) -> PIL.Image.Image: |
|
if not torch.cuda.is_available(): |
|
raise gr.Error('CUDA is not available.') |
|
|
|
self.load_pipe(base_model, lora_weight_name) |
|
|
|
generator = torch.Generator(device=self.device).manual_seed(seed) |
|
tune_lora_scale(self.pipe.unet, alpha) |
|
tune_lora_scale(self.pipe.text_encoder, alpha_for_text) |
|
out = self.pipe(prompt, |
|
num_inference_steps=n_steps, |
|
guidance_scale=guidance_scale, |
|
generator=generator) |
|
return out.images[0] |
|
|