#!/usr/bin/env python from __future__ import annotations import pathlib import gradio as gr import slugify from constants import UploadTarget from uploader import Uploader from utils import find_exp_dirs class LoRAModelUploader(Uploader): def upload_lora_model(self, folder_path: str, repo_name: str, upload_to: str, private: bool, delete_existing_repo: bool) -> str: if not repo_name: repo_name = pathlib.Path(folder_path).name repo_name = slugify.slugify(repo_name) if upload_to == UploadTarget.PERSONAL_PROFILE.value: organization = '' elif upload_to == UploadTarget.LORA_LIBRARY.value: organization = 'lora-library' else: raise ValueError return self.upload(folder_path, repo_name, organization=organization, private=private, delete_existing_repo=delete_existing_repo) def load_local_lora_model_list() -> dict: choices = find_exp_dirs(ignore_repo=True) return gr.update(choices=choices, value=choices[0] if choices else None) def create_upload_demo(hf_token: str | None) -> gr.Blocks: uploader = LoRAModelUploader(hf_token) model_dirs = find_exp_dirs(ignore_repo=True) with gr.Blocks() as demo: with gr.Box(): gr.Markdown('Local Models') reload_button = gr.Button('Reload Model List') model_dir = gr.Dropdown( label='LoRA Model ID', choices=model_dirs, value=model_dirs[0] if model_dirs else None) gr.Markdown( '- Models uploaded in training time will not be shown here.') with gr.Box(): gr.Markdown('Upload Settings') with gr.Row(): use_private_repo = gr.Checkbox(label='Private', value=False) delete_existing_repo = gr.Checkbox( label='Delete existing repo of the same name', value=False) upload_to = gr.Radio(label='Upload to', choices=[_.value for _ in UploadTarget], value=UploadTarget.PERSONAL_PROFILE.value) model_name = gr.Textbox(label='Model Name') upload_button = gr.Button('Upload') gr.Markdown(''' - You can upload your trained model to your personal profile (i.e. https://huggingface.co/{your_username}/{model_name}) or to the public [LoRA Concepts Library](https://huggingface.co/lora-library) (i.e. https://huggingface.co/lora-library/{model_name}). ''') with gr.Box(): gr.Markdown('Output message') output_message = gr.Markdown() reload_button.click(fn=load_local_lora_model_list, inputs=None, outputs=model_dir) upload_button.click(fn=uploader.upload_lora_model, inputs=[ model_dir, model_name, upload_to, use_private_repo, delete_existing_repo, ], outputs=output_message) return demo if __name__ == '__main__': import os hf_token = os.getenv('HF_TOKEN') demo = create_upload_demo(hf_token) demo.queue(max_size=1).launch(share=False)