Spaces:
Running
Running
import tempfile, os | |
from rest_framework import viewsets, filters | |
from django_filters.rest_framework import DjangoFilterBackend | |
from endpoint_teste.models import EndpointTesteModel | |
from endpoint_teste.serializer import EndpointTesteSerializer, PDFUploadSerializer | |
from setup.environment import default_model | |
from drf_spectacular.utils import extend_schema | |
from rest_framework.decorators import api_view, parser_classes | |
from rest_framework.parsers import MultiPartParser | |
from rest_framework.response import Response | |
from langchain_backend.main import get_llm_answer | |
from .serializer import TesteSerializer | |
from langchain_huggingface import HuggingFaceEndpoint | |
class EndpointTesteViewSet(viewsets.ModelViewSet): | |
"""Mostrará todas as tarefas""" | |
queryset = EndpointTesteModel.objects.order_by("id").all() | |
serializer_class = EndpointTesteSerializer | |
filter_backends = [DjangoFilterBackend, filters.SearchFilter] | |
search_fields = ["id"] | |
def getTeste(request): | |
if request.method == "POST": | |
serializer = TesteSerializer(data=request.data) | |
if serializer.is_valid(raise_exception=True): | |
data = request.data | |
pdf_url = None | |
if data["pdf_url"]: | |
pdf_url = data["pdf_url"] | |
resposta_llm = get_llm_answer(data["system_prompt"], data["user_message"], pdf_url) | |
return Response({ | |
"Resposta": resposta_llm | |
}) | |
if request.method == "GET": | |
# hugging_face_token = os.environ.get("hugging_face_token") | |
# API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B" | |
# headers = {"Authorization": "Bearer " + hugging_face_token} | |
# def query(payload): | |
# response = requests.post(API_URL, headers=headers, json=payload) | |
# return response.json() | |
# output = query({ | |
# "inputs": "Can you please let us know more details about your something I don't know", | |
# }) | |
# print('output: ', output) | |
# print('output: ', dir(output)) | |
llm = HuggingFaceEndpoint( | |
repo_id="meta-llama/Meta-Llama-3-8B-Instruct", | |
task="text-generation", | |
max_new_tokens=100, | |
do_sample=False, | |
huggingfacehub_api_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN") | |
) | |
result = llm.invoke("Hugging Face is") | |
print('result: ', result) | |
return Response(result) | |
def getPDF(request): | |
if request.method == "POST": | |
serializer = PDFUploadSerializer(data=request.data) | |
if serializer.is_valid(raise_exception=True): | |
listaPDFs = [] | |
print('\n\n') | |
data = request.data | |
print('data: ', data) | |
embedding = serializer.validated_data.get("embedding", "gpt") | |
model = serializer.validated_data.get("model", default_model) | |
# pdf_file = serializer.validated_data['file'] | |
for file in serializer.validated_data['files']: | |
print("file: ", file) | |
file.seek(0) | |
# Create a temporary file to save the uploaded PDF | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file: | |
# Write the uploaded file content to the temporary file | |
for chunk in file.chunks(): | |
temp_file.write(chunk) | |
temp_file_path = temp_file.name # Get the path of the temporary file | |
listaPDFs.append(temp_file_path) | |
# print('temp_file_path: ', temp_file_path) | |
print('listaPDFs: ', listaPDFs) | |
resposta_llm = None | |
# resposta_llm = get_llm_answer(data["system_prompt"], data["user_message"], temp_file_path, model=model, embedding=embedding) | |
resposta_llm = get_llm_answer(data["system_prompt"], data["user_message"], listaPDFs, model=model, embedding=embedding) | |
for file in listaPDFs: | |
os.remove(file) | |
# os.remove(temp_file_path) | |
return Response({ | |
"Resposta": resposta_llm | |
}) |