Spaces:
Running
Running
luanpoppe
commited on
Commit
·
1fd7b67
1
Parent(s):
f22dc64
feat: adicionando resumo do cursor
Browse files- _utils/resumo_completo_cursor.py +221 -0
- resumos/serializer.py +21 -17
- resumos/views.py +31 -1
- setup/urls.py +2 -2
_utils/resumo_completo_cursor.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, Dict, Tuple
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.document_loaders import PyPDFLoader
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from langchain.chat_models import ChatOpenAI
|
8 |
+
from langchain.chains import create_extraction_chain
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
from dataclasses import dataclass
|
11 |
+
import uuid
|
12 |
+
import json
|
13 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
14 |
+
from setup.environment import default_model
|
15 |
+
|
16 |
+
os.environ["LANGCHAIN_TRACING_V2"]="true"
|
17 |
+
os.environ["LANGCHAIN_ENDPOINT"]="https://api.smith.langchain.com"
|
18 |
+
os.environ.get("LANGCHAIN_API_KEY")
|
19 |
+
os.environ["LANGCHAIN_PROJECT"]="VELLA"
|
20 |
+
|
21 |
+
@dataclass
|
22 |
+
class DocumentChunk:
|
23 |
+
content: str
|
24 |
+
page_number: int
|
25 |
+
chunk_id: str
|
26 |
+
start_char: int
|
27 |
+
end_char: int
|
28 |
+
|
29 |
+
class DocumentSummarizer:
|
30 |
+
def __init__(self, openai_api_key: str, model, embedding, chunk_config, system_prompt):
|
31 |
+
self.model = model
|
32 |
+
self.system_prompt = system_prompt
|
33 |
+
self.openai_api_key = openai_api_key
|
34 |
+
self.embeddings = HuggingFaceEmbeddings(
|
35 |
+
model_name=embedding
|
36 |
+
)
|
37 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
38 |
+
chunk_size=chunk_config["size"],
|
39 |
+
chunk_overlap=chunk_config["overlap"]
|
40 |
+
)
|
41 |
+
self.chunk_metadata = {} # Store chunk metadata for tracing
|
42 |
+
|
43 |
+
def load_and_split_document(self, pdf_path: str) -> List[DocumentChunk]:
|
44 |
+
"""Load PDF and split into chunks with metadata"""
|
45 |
+
loader = PyPDFLoader(pdf_path)
|
46 |
+
pages = loader.load()
|
47 |
+
chunks = []
|
48 |
+
char_count = 0
|
49 |
+
|
50 |
+
for page in pages:
|
51 |
+
text = page.page_content
|
52 |
+
# Split the page content
|
53 |
+
page_chunks = self.text_splitter.split_text(text)
|
54 |
+
|
55 |
+
for chunk in page_chunks:
|
56 |
+
chunk_id = str(uuid.uuid4())
|
57 |
+
start_char = text.find(chunk)
|
58 |
+
end_char = start_char + len(chunk)
|
59 |
+
|
60 |
+
doc_chunk = DocumentChunk(
|
61 |
+
content=chunk,
|
62 |
+
page_number=page.metadata.get('page') + 1, # 1-based page numbering
|
63 |
+
chunk_id=chunk_id,
|
64 |
+
start_char=char_count + start_char,
|
65 |
+
end_char=char_count + end_char
|
66 |
+
)
|
67 |
+
chunks.append(doc_chunk)
|
68 |
+
|
69 |
+
# Store metadata for later retrieval
|
70 |
+
self.chunk_metadata[chunk_id] = {
|
71 |
+
'page': doc_chunk.page_number,
|
72 |
+
'start_char': doc_chunk.start_char,
|
73 |
+
'end_char': doc_chunk.end_char
|
74 |
+
}
|
75 |
+
|
76 |
+
char_count += len(text)
|
77 |
+
|
78 |
+
return chunks
|
79 |
+
|
80 |
+
def create_vector_store(self, chunks: List[DocumentChunk]) -> Chroma:
|
81 |
+
"""Create vector store with metadata"""
|
82 |
+
texts = [chunk.content for chunk in chunks]
|
83 |
+
metadatas = [{
|
84 |
+
'chunk_id': chunk.chunk_id,
|
85 |
+
'page': chunk.page_number,
|
86 |
+
'start_char': chunk.start_char,
|
87 |
+
'end_char': chunk.end_char
|
88 |
+
} for chunk in chunks]
|
89 |
+
|
90 |
+
vector_store = Chroma.from_texts(
|
91 |
+
texts=texts,
|
92 |
+
metadatas=metadatas,
|
93 |
+
embedding=self.embeddings
|
94 |
+
)
|
95 |
+
return vector_store
|
96 |
+
|
97 |
+
def generate_summary_with_sources(
|
98 |
+
self,
|
99 |
+
vector_store: Chroma,
|
100 |
+
query: str = "Summarize the main points of this document"
|
101 |
+
) -> List[Dict]:
|
102 |
+
"""Generate summary with source citations, returning structured JSON data"""
|
103 |
+
# Retrieve relevant chunks with metadata
|
104 |
+
relevant_docs = vector_store.similarity_search_with_score(query, k=5)
|
105 |
+
|
106 |
+
# Prepare context and track sources
|
107 |
+
contexts = []
|
108 |
+
sources = []
|
109 |
+
|
110 |
+
for doc, score in relevant_docs:
|
111 |
+
chunk_id = doc.metadata['chunk_id']
|
112 |
+
context = doc.page_content
|
113 |
+
contexts.append(context)
|
114 |
+
|
115 |
+
sources.append({
|
116 |
+
'content': context,
|
117 |
+
'page': doc.metadata['page'],
|
118 |
+
'chunk_id': chunk_id,
|
119 |
+
'relevance_score': score
|
120 |
+
})
|
121 |
+
|
122 |
+
prompt = PromptTemplate(
|
123 |
+
template=self.system_prompt,
|
124 |
+
input_variables=["context"]
|
125 |
+
)
|
126 |
+
llm = ""
|
127 |
+
|
128 |
+
if (self.model == default_model):
|
129 |
+
llm = ChatOpenAI(
|
130 |
+
temperature=0,
|
131 |
+
model_name="gpt-4o-mini",
|
132 |
+
api_key=self.openai_api_key
|
133 |
+
)
|
134 |
+
else:
|
135 |
+
llm = HuggingFaceEndpoint(
|
136 |
+
repo_id=self.model,
|
137 |
+
task="text-generation",
|
138 |
+
max_new_tokens=1100,
|
139 |
+
do_sample=False,
|
140 |
+
huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
141 |
+
)
|
142 |
+
|
143 |
+
|
144 |
+
response = llm.predict(prompt.format(context="\n\n".join(contexts)))
|
145 |
+
|
146 |
+
# Split the response into paragraphs
|
147 |
+
summaries = [p.strip() for p in response.split('\n\n') if p.strip()]
|
148 |
+
|
149 |
+
# Create structured output
|
150 |
+
structured_output = []
|
151 |
+
for idx, summary in enumerate(summaries):
|
152 |
+
# Associate each summary with the most relevant source
|
153 |
+
structured_output.append({
|
154 |
+
"content": summary,
|
155 |
+
"source": {
|
156 |
+
"page": sources[min(idx, len(sources)-1)]['page'],
|
157 |
+
"text": sources[min(idx, len(sources)-1)]['content'][:200] + "...",
|
158 |
+
"relevance_score": sources[min(idx, len(sources)-1)]['relevance_score']
|
159 |
+
}
|
160 |
+
})
|
161 |
+
|
162 |
+
return structured_output
|
163 |
+
|
164 |
+
def get_source_context(self, chunk_id: str, window: int = 100) -> Dict:
|
165 |
+
"""Get extended context around a specific chunk"""
|
166 |
+
metadata = self.chunk_metadata.get(chunk_id)
|
167 |
+
if not metadata:
|
168 |
+
return None
|
169 |
+
|
170 |
+
return {
|
171 |
+
'page': metadata['page'],
|
172 |
+
'start_char': metadata['start_char'],
|
173 |
+
'end_char': metadata['end_char']
|
174 |
+
}
|
175 |
+
|
176 |
+
def get_llm_summary_answer_by_cursor(serializer, listaPDFs):
|
177 |
+
# By Luan
|
178 |
+
allPdfsChunks = []
|
179 |
+
|
180 |
+
# Initialize summarizer
|
181 |
+
summarizer = DocumentSummarizer(
|
182 |
+
openai_api_key=os.environ.get("OPENAI_API_KEY"),
|
183 |
+
embedding=serializer["hf_embedding"],
|
184 |
+
chunk_config={"size": serializer["chunk_size"], "overlap": serializer["chunk_overlap"]},
|
185 |
+
system_prompt=serializer["system_prompt"],
|
186 |
+
model=serializer["model"]
|
187 |
+
)
|
188 |
+
|
189 |
+
# Load and process document
|
190 |
+
for pdf in listaPDFs:
|
191 |
+
pdf_path = pdf
|
192 |
+
chunks = summarizer.load_and_split_document(pdf_path)
|
193 |
+
allPdfsChunks = allPdfsChunks + chunks
|
194 |
+
|
195 |
+
vector_store = summarizer.create_vector_store(allPdfsChunks)
|
196 |
+
|
197 |
+
# Generate structured summary
|
198 |
+
structured_summaries = summarizer.generate_summary_with_sources(vector_store)
|
199 |
+
|
200 |
+
# Print or return the structured data
|
201 |
+
# print(structured_summaries)
|
202 |
+
json_data = json.dumps(structured_summaries)
|
203 |
+
print("\n\n")
|
204 |
+
print(json_data)
|
205 |
+
return structured_summaries
|
206 |
+
# If you need to send to frontend, you can just return structured_summaries
|
207 |
+
# It will be in the format:
|
208 |
+
# [
|
209 |
+
# {
|
210 |
+
# "content": "Summary point 1...",
|
211 |
+
# "source": {
|
212 |
+
# "page": 1,
|
213 |
+
# "text": "Source text...",
|
214 |
+
# "relevance_score": 0.95
|
215 |
+
# }
|
216 |
+
# },
|
217 |
+
# ...
|
218 |
+
# ]
|
219 |
+
|
220 |
+
if __name__ == "__main__":
|
221 |
+
get_llm_summary_answer_by_cursor()
|
resumos/serializer.py
CHANGED
@@ -1,25 +1,29 @@
|
|
1 |
from rest_framework import serializers
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
# "[i]Dano moral[/i]",
|
13 |
-
# "[i]Nexo causal[/i]",
|
14 |
-
# "[i]Indenização[/i]"
|
15 |
-
# ]
|
16 |
-
# }
|
17 |
-
|
18 |
-
# pecam para a AI formatar em BBcode
|
19 |
|
20 |
class ResumoPDFSerializer(serializers.Serializer):
|
21 |
files = serializers.ListField(child=serializers.FileField(), required=True)
|
22 |
system_prompt = serializers.CharField(required=False)
|
23 |
user_message = serializers.CharField(required=False, default="")
|
24 |
model = serializers.CharField(required=False)
|
25 |
-
iterative_refinement = serializers.BooleanField(required=False, default=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from rest_framework import serializers
|
2 |
+
from setup.environment import default_model
|
3 |
+
# from _utils.utils import DEFAULT_SYSTEM_PROMPT
|
4 |
|
5 |
+
prompt_template = """
|
6 |
+
Based on the following context, provide multiple key points from the document.
|
7 |
+
For each point, create a new paragraph.
|
8 |
+
Each paragraph should be a complete, self-contained insight.
|
9 |
+
|
10 |
+
Context: {context}
|
11 |
+
|
12 |
+
Key points:
|
13 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
class ResumoPDFSerializer(serializers.Serializer):
|
16 |
files = serializers.ListField(child=serializers.FileField(), required=True)
|
17 |
system_prompt = serializers.CharField(required=False)
|
18 |
user_message = serializers.CharField(required=False, default="")
|
19 |
model = serializers.CharField(required=False)
|
20 |
+
iterative_refinement = serializers.BooleanField(required=False, default=False)
|
21 |
+
|
22 |
+
class ResumoCursorSerializer(serializers.Serializer):
|
23 |
+
files = serializers.ListField(child=serializers.FileField(), required=True)
|
24 |
+
system_prompt = serializers.CharField(required=False, default=prompt_template)
|
25 |
+
user_message = serializers.CharField(required=False, default="")
|
26 |
+
model = serializers.CharField(required=False, default=default_model)
|
27 |
+
hf_embedding = serializers.CharField(required=False, default="all-MiniLM-L6-v2")
|
28 |
+
chunk_size = serializers.IntegerField(required=False, default=1000)
|
29 |
+
chunk_overlap = serializers.IntegerField(required=False, default=200)
|
resumos/views.py
CHANGED
@@ -2,8 +2,9 @@ from rest_framework.views import APIView
|
|
2 |
import tempfile, os
|
3 |
from rest_framework.response import Response
|
4 |
|
|
|
5 |
from _utils.utils import DEFAULT_SYSTEM_PROMPT
|
6 |
-
from .serializer import ResumoPDFSerializer
|
7 |
from _utils.main import get_llm_answer_summary, get_llm_answer_summary_with_embedding
|
8 |
from setup.environment import default_model
|
9 |
from rest_framework.parsers import MultiPartParser
|
@@ -68,6 +69,35 @@ class ResumoEmbeddingView(APIView):
|
|
68 |
system_prompt = data.get("system_prompt", DEFAULT_SYSTEM_PROMPT)
|
69 |
resposta_llm = get_llm_answer_summary_with_embedding(system_prompt, data["user_message"], listaPDFs, model=model, isIterativeRefinement=data["iterative_refinement"])
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
for file in listaPDFs:
|
72 |
os.remove(file)
|
73 |
|
|
|
2 |
import tempfile, os
|
3 |
from rest_framework.response import Response
|
4 |
|
5 |
+
from _utils.resumo_completo_cursor import get_llm_summary_answer_by_cursor
|
6 |
from _utils.utils import DEFAULT_SYSTEM_PROMPT
|
7 |
+
from .serializer import ResumoPDFSerializer, ResumoCursorSerializer
|
8 |
from _utils.main import get_llm_answer_summary, get_llm_answer_summary_with_embedding
|
9 |
from setup.environment import default_model
|
10 |
from rest_framework.parsers import MultiPartParser
|
|
|
69 |
system_prompt = data.get("system_prompt", DEFAULT_SYSTEM_PROMPT)
|
70 |
resposta_llm = get_llm_answer_summary_with_embedding(system_prompt, data["user_message"], listaPDFs, model=model, isIterativeRefinement=data["iterative_refinement"])
|
71 |
|
72 |
+
for file in listaPDFs:
|
73 |
+
os.remove(file)
|
74 |
+
|
75 |
+
return Response({"resposta": resposta_llm})
|
76 |
+
|
77 |
+
class ResumoCompletoCursorView(APIView):
|
78 |
+
parser_classes = [MultiPartParser]
|
79 |
+
|
80 |
+
@extend_schema(
|
81 |
+
request=ResumoCursorSerializer,
|
82 |
+
)
|
83 |
+
def post(self, request):
|
84 |
+
serializer = ResumoCursorSerializer(data=request.data)
|
85 |
+
if serializer.is_valid(raise_exception=True):
|
86 |
+
listaPDFs = []
|
87 |
+
data = serializer.validated_data
|
88 |
+
print('\nserializer.validated_data: ', serializer.validated_data)
|
89 |
+
|
90 |
+
for file in serializer.validated_data['files']:
|
91 |
+
file.seek(0)
|
92 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file: # Create a temporary file to save the uploaded PDF
|
93 |
+
for chunk in file.chunks(): # Write the uploaded file content to the temporary file
|
94 |
+
temp_file.write(chunk)
|
95 |
+
temp_file_path = temp_file.name # Get the path of the temporary file
|
96 |
+
listaPDFs.append(temp_file_path)
|
97 |
+
print('listaPDFs: ', listaPDFs)
|
98 |
+
|
99 |
+
resposta_llm = get_llm_summary_answer_by_cursor(data, listaPDFs)
|
100 |
+
|
101 |
for file in listaPDFs:
|
102 |
os.remove(file)
|
103 |
|
setup/urls.py
CHANGED
@@ -5,7 +5,7 @@ from drf_spectacular.views import SpectacularSwaggerView, SpectacularAPIView
|
|
5 |
|
6 |
|
7 |
from pdfs.views import getPDF
|
8 |
-
from resumos.views import ResumoView
|
9 |
from modelos_usuarios.views import ListCreateModeloUsuarioView, CreateUpdateDeleteModeloUsuarioView, ListModelosPorUsuarioView
|
10 |
|
11 |
router = routers.DefaultRouter()
|
@@ -16,9 +16,9 @@ urlpatterns = [
|
|
16 |
path('swagger/', SpectacularSwaggerView.as_view(url_name='schema'), name='swagger-ui'),
|
17 |
path("admin/", admin.site.urls),
|
18 |
path('', include(router.urls)),
|
19 |
-
|
20 |
path('pdf', getPDF, name='upload-pdf'),
|
21 |
path('resumo', ResumoView.as_view(), name='summary-pdf'),
|
|
|
22 |
path("modelo", ListCreateModeloUsuarioView.as_view()),
|
23 |
path("modelo/<int:pk>", CreateUpdateDeleteModeloUsuarioView.as_view()),
|
24 |
path("usuario/<int:user_id>/modelos", ListModelosPorUsuarioView.as_view())
|
|
|
5 |
|
6 |
|
7 |
from pdfs.views import getPDF
|
8 |
+
from resumos.views import ResumoView, ResumoCompletoCursorView
|
9 |
from modelos_usuarios.views import ListCreateModeloUsuarioView, CreateUpdateDeleteModeloUsuarioView, ListModelosPorUsuarioView
|
10 |
|
11 |
router = routers.DefaultRouter()
|
|
|
16 |
path('swagger/', SpectacularSwaggerView.as_view(url_name='schema'), name='swagger-ui'),
|
17 |
path("admin/", admin.site.urls),
|
18 |
path('', include(router.urls)),
|
|
|
19 |
path('pdf', getPDF, name='upload-pdf'),
|
20 |
path('resumo', ResumoView.as_view(), name='summary-pdf'),
|
21 |
+
path('resumo/cursor', ResumoCompletoCursorView.as_view(), name='summary-cursor-pdf'),
|
22 |
path("modelo", ListCreateModeloUsuarioView.as_view()),
|
23 |
path("modelo/<int:pk>", CreateUpdateDeleteModeloUsuarioView.as_view()),
|
24 |
path("usuario/<int:user_id>/modelos", ListModelosPorUsuarioView.as_view())
|