Spaces:
Running
Running
luanpoppe
commited on
Commit
·
b700f35
1
Parent(s):
3f199c2
feat: adicionando funcionalidade de múltiplos pdfs
Browse files- endpoint_teste/serializer.py +2 -1
- endpoint_teste/views.py +20 -24
- langchain_backend/main.py +0 -1
- langchain_backend/utils.py +10 -3
endpoint_teste/serializer.py
CHANGED
@@ -14,7 +14,8 @@ class TesteSerializer(serializers.Serializer):
|
|
14 |
pdf_url = serializers.CharField(required=False)
|
15 |
|
16 |
class PDFUploadSerializer(serializers.Serializer):
|
17 |
-
file = serializers.FileField()
|
|
|
18 |
system_prompt = serializers.CharField(required=True)
|
19 |
user_message = serializers.CharField(required=True)
|
20 |
model = serializers.CharField(required=False)
|
|
|
14 |
pdf_url = serializers.CharField(required=False)
|
15 |
|
16 |
class PDFUploadSerializer(serializers.Serializer):
|
17 |
+
# file = serializers.FileField()
|
18 |
+
files = serializers.ListField(child=serializers.FileField(), required=True)
|
19 |
system_prompt = serializers.CharField(required=True)
|
20 |
user_message = serializers.CharField(required=True)
|
21 |
model = serializers.CharField(required=False)
|
endpoint_teste/views.py
CHANGED
@@ -59,40 +59,36 @@ def getTeste(request):
|
|
59 |
@api_view(["POST"])
|
60 |
def getPDF(request):
|
61 |
if request.method == "POST":
|
62 |
-
print('\n\n\n')
|
63 |
-
print("CHEGOU AQUI")
|
64 |
serializer = PDFUploadSerializer(data=request.data)
|
65 |
if serializer.is_valid(raise_exception=True):
|
66 |
-
|
|
|
67 |
data = request.data
|
68 |
print('data: ', data)
|
69 |
-
pdf_file = serializer.validated_data['file']
|
70 |
-
pdf_file.seek(0)
|
71 |
-
|
72 |
embedding = serializer.validated_data.get("embedding", "gpt")
|
73 |
model = serializer.validated_data.get("model", default_model)
|
74 |
-
# print(dir(pdf_file))
|
75 |
-
# print('pdf_file: ', pdf_file.read())
|
76 |
-
# pdf_content = pdf_file.read()
|
77 |
-
# Save the file or process it as needed
|
78 |
-
# For example, you can save it to a specific location
|
79 |
-
# with open(f'endpoint_teste/media/uploads/{pdf_file.name}', 'wb+') as destination:
|
80 |
-
# for chunk in pdf_file.chunks():
|
81 |
-
# destination.write(chunk)
|
82 |
-
# return Response({"message": "File uploaded successfully."})
|
83 |
|
84 |
-
#
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
resposta_llm = None
|
93 |
-
resposta_llm = get_llm_answer(data["system_prompt"], data["user_message"], temp_file_path, model=model, embedding=embedding)
|
|
|
94 |
|
95 |
-
|
|
|
|
|
96 |
|
97 |
return Response({
|
98 |
"Resposta": resposta_llm
|
|
|
59 |
@api_view(["POST"])
|
60 |
def getPDF(request):
|
61 |
if request.method == "POST":
|
|
|
|
|
62 |
serializer = PDFUploadSerializer(data=request.data)
|
63 |
if serializer.is_valid(raise_exception=True):
|
64 |
+
listaPDFs = []
|
65 |
+
print('\n\n')
|
66 |
data = request.data
|
67 |
print('data: ', data)
|
|
|
|
|
|
|
68 |
embedding = serializer.validated_data.get("embedding", "gpt")
|
69 |
model = serializer.validated_data.get("model", default_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
# pdf_file = serializer.validated_data['file']
|
72 |
+
for file in serializer.validated_data['files']:
|
73 |
+
print("file: ", file)
|
74 |
+
file.seek(0)
|
75 |
+
# Create a temporary file to save the uploaded PDF
|
76 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
|
77 |
+
# Write the uploaded file content to the temporary file
|
78 |
+
for chunk in file.chunks():
|
79 |
+
temp_file.write(chunk)
|
80 |
+
temp_file_path = temp_file.name # Get the path of the temporary file
|
81 |
+
listaPDFs.append(temp_file_path)
|
82 |
+
# print('temp_file_path: ', temp_file_path)
|
83 |
+
print('listaPDFs: ', listaPDFs)
|
84 |
|
85 |
resposta_llm = None
|
86 |
+
# resposta_llm = get_llm_answer(data["system_prompt"], data["user_message"], temp_file_path, model=model, embedding=embedding)
|
87 |
+
resposta_llm = get_llm_answer(data["system_prompt"], data["user_message"], listaPDFs, model=model, embedding=embedding)
|
88 |
|
89 |
+
for file in listaPDFs:
|
90 |
+
os.remove(file)
|
91 |
+
# os.remove(temp_file_path)
|
92 |
|
93 |
return Response({
|
94 |
"Resposta": resposta_llm
|
langchain_backend/main.py
CHANGED
@@ -19,7 +19,6 @@ def get_llm_answer(system_prompt, user_prompt, pdf_url, model, embedding):
|
|
19 |
embedding_function=embedding_object
|
20 |
)
|
21 |
|
22 |
-
|
23 |
print('model: ', model)
|
24 |
print('embedding: ', embedding)
|
25 |
pages = []
|
|
|
19 |
embedding_function=embedding_object
|
20 |
)
|
21 |
|
|
|
22 |
print('model: ', model)
|
23 |
print('embedding: ', embedding)
|
24 |
pages = []
|
langchain_backend/utils.py
CHANGED
@@ -16,11 +16,18 @@ embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-m
|
|
16 |
|
17 |
allIds = []
|
18 |
|
19 |
-
def getPDF(
|
20 |
documentId = 0
|
21 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
for page in pages:
|
25 |
print('\n')
|
26 |
print('allIds: ', allIds)
|
|
|
16 |
|
17 |
allIds = []
|
18 |
|
19 |
+
def getPDF(file_paths):
|
20 |
documentId = 0
|
21 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
22 |
+
pages = []
|
23 |
+
for file in file_paths:
|
24 |
+
loader = PyPDFLoader(file, extract_images=False)
|
25 |
+
pagesDoc = loader.load_and_split(text_splitter)
|
26 |
+
pages = pages + pagesDoc
|
27 |
+
|
28 |
+
|
29 |
+
# loader = PyPDFLoader(file_paths, extract_images=False)
|
30 |
+
# pages = loader.load_and_split(text_splitter)
|
31 |
for page in pages:
|
32 |
print('\n')
|
33 |
print('allIds: ', allIds)
|