Spaces:
Running
Running
luanpoppe
commited on
Commit
·
e79797a
1
Parent(s):
68d3cc8
fix
Browse files- compose.yaml +10 -19
- langchain_backend/utils.py +3 -3
compose.yaml
CHANGED
@@ -7,25 +7,16 @@ services:
|
|
7 |
- SECRET_KEY=${SECRET_KEY}
|
8 |
- DATABASE_PASSWORD=${DATABASE_PASSWORD}
|
9 |
- OPENAI_API_KEY=${OPENAI_API_KEY}
|
10 |
-
# - PYTHONPATH=/app:$PYTHONPATH
|
11 |
env_file:
|
12 |
- .env
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
volumes:
|
19 |
-
myapp:
|
20 |
-
# watch:
|
21 |
-
# develop:
|
22 |
-
# watch:
|
23 |
-
# - action: sync
|
24 |
-
# path: ./
|
25 |
-
# target: /app
|
26 |
-
# ignore:
|
27 |
-
# - .venv/
|
28 |
-
# - action: rebuild
|
29 |
-
# path: requirements.txt
|
30 |
-
# - action: rebuild
|
31 |
-
# path: .venv/
|
|
|
7 |
- SECRET_KEY=${SECRET_KEY}
|
8 |
- DATABASE_PASSWORD=${DATABASE_PASSWORD}
|
9 |
- OPENAI_API_KEY=${OPENAI_API_KEY}
|
|
|
10 |
env_file:
|
11 |
- .env
|
12 |
+
develop:
|
13 |
+
watch:
|
14 |
+
- action: sync
|
15 |
+
path: ./
|
16 |
+
target: /app
|
17 |
+
ignore:
|
18 |
+
- .venv/
|
19 |
+
- action: rebuild
|
20 |
+
path: requirements.txt
|
21 |
volumes:
|
22 |
+
myapp:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
langchain_backend/utils.py
CHANGED
@@ -12,7 +12,7 @@ from setup.environment import default_model
|
|
12 |
os.environ.get("OPENAI_API_KEY")
|
13 |
os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
14 |
|
15 |
-
def getPDF(file_path
|
16 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
17 |
loader = PyPDFLoader(file_path, extract_images=False)
|
18 |
pages = loader.load_and_split(text_splitter)
|
@@ -25,8 +25,8 @@ def create_retriever(documents):
|
|
25 |
)
|
26 |
|
27 |
retriever = vectorstore.as_retriever(
|
28 |
-
search_type="similarity",
|
29 |
-
search_kwargs={"k":
|
30 |
)
|
31 |
|
32 |
return retriever
|
|
|
12 |
os.environ.get("OPENAI_API_KEY")
|
13 |
os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
14 |
|
15 |
+
def getPDF(file_path):
|
16 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
17 |
loader = PyPDFLoader(file_path, extract_images=False)
|
18 |
pages = loader.load_and_split(text_splitter)
|
|
|
25 |
)
|
26 |
|
27 |
retriever = vectorstore.as_retriever(
|
28 |
+
# search_type="similarity",
|
29 |
+
# search_kwargs={"k": 3},
|
30 |
)
|
31 |
|
32 |
return retriever
|