Spaces:
Runtime error
Runtime error
Commit
·
336ac28
1
Parent(s):
1e27e4a
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import pickle
|
|
|
4 |
|
5 |
treemodel = pickle.load(open('decision_tree.pkl', 'rb'))
|
6 |
-
|
7 |
|
8 |
def onehot(df, column):
|
9 |
df = df.copy()
|
@@ -45,15 +46,15 @@ def tree(file_obj):
|
|
45 |
pred_df = pd.concat([df_original, pred_df], axis=1)
|
46 |
return pred_df
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
file = gr.components.File(file_count="single", type="file", label="Fisierul CSV cu tranzactii", optional=False)
|
59 |
tree_output = gr.components.Dataframe(max_rows=20, max_cols=None, overflow_row_behaviour="paginate", type="pandas", label="predictedFraud - Predictii bazate pe modelul de clasificare isFraud - Etichetele reale")
|
@@ -66,12 +67,13 @@ tree_interface = gr.Interface(
|
|
66 |
description='<h2>Sistem expert bazat pe un model de clasificare pentru detectarea fraudelor in tranzactii bancare.<h2><h3>predictedFraud - Predictii bazate pe modelul de clasificare. isFraud - Etichetele reale<h3>'
|
67 |
)
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
#
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import pickle
|
4 |
+
from tensorflow import keras
|
5 |
|
6 |
treemodel = pickle.load(open('decision_tree.pkl', 'rb'))
|
7 |
+
nnmodel = keras.models.load_model("nnmodel.h5")
|
8 |
|
9 |
def onehot(df, column):
|
10 |
df = df.copy()
|
|
|
46 |
pred_df = pd.concat([df_original, pred_df], axis=1)
|
47 |
return pred_df
|
48 |
|
49 |
+
def nn(file_obj):
|
50 |
+
nn_df = pd.read_csv(file_obj.name)
|
51 |
+
nn_df = dataframe(nn_df)
|
52 |
+
y_prednn = nnmodel.predict(nn_df)
|
53 |
+
pred_dfnn = pd.DataFrame(y_prednn, columns = ['predictedFraud'])
|
54 |
+
#append the predictions to the original dataframe
|
55 |
+
df_originalnn = pd.read_csv(file_obj.name)
|
56 |
+
pred_dfnn = pd.concat([df_originalnn, pred_dfnn], axis=1)
|
57 |
+
return pred_dfnn
|
58 |
|
59 |
file = gr.components.File(file_count="single", type="file", label="Fisierul CSV cu tranzactii", optional=False)
|
60 |
tree_output = gr.components.Dataframe(max_rows=20, max_cols=None, overflow_row_behaviour="paginate", type="pandas", label="predictedFraud - Predictii bazate pe modelul de clasificare isFraud - Etichetele reale")
|
|
|
67 |
description='<h2>Sistem expert bazat pe un model de clasificare pentru detectarea fraudelor in tranzactii bancare.<h2><h3>predictedFraud - Predictii bazate pe modelul de clasificare. isFraud - Etichetele reale<h3>'
|
68 |
)
|
69 |
|
70 |
+
nn_interface = gr.Interface(
|
71 |
+
fn=nn,
|
72 |
+
inputs=file,
|
73 |
+
outputs=nn_output,
|
74 |
+
title="Fraud Detection - NEURAL NETWORK EXPERT SYSTEM",
|
75 |
+
description='<h2>Sistem expert bazat pe un model de clasificare pentru detectarea fraudelor in tranzactii bancare.<h2><h3>predictedFraud - Predictii bazate pe modelul de clasificare. isFraud - Etichetele reale<h3>'
|
76 |
+
|
77 |
+
)
|
78 |
+
#tree_interface.launch(inline=True)
|
79 |
+
gr.Parallel(tree_interface, nn_interface).launch()
|