Spaces:
Runtime error
Runtime error
luciancotolan
commited on
Commit
·
75fefe4
1
Parent(s):
e5dbc77
added neural net
Browse files- app.py +35 -17
- neural_network.pkl +3 -0
app.py
CHANGED
@@ -2,7 +2,8 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
import joblib
|
4 |
|
5 |
-
|
|
|
6 |
|
7 |
def onehot(df, column):
|
8 |
df = df.copy()
|
@@ -12,8 +13,7 @@ def onehot(df, column):
|
|
12 |
return df
|
13 |
|
14 |
|
15 |
-
def dataframe(
|
16 |
-
df = pd.read_csv(file_obj.name)
|
17 |
df = onehot(df, column='type')
|
18 |
|
19 |
#if the 'type' column doesn't have value 'CASH_OUT' then add a column 'type_CASH_OUT' with value 0
|
@@ -33,27 +33,45 @@ def dataframe(file_obj):
|
|
33 |
df['type_PAYMENT'] = 0
|
34 |
|
35 |
df = df.drop(['nameOrig','nameDest','isFraud'], axis=1)
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
39 |
pred_df = pd.DataFrame(y_pred, columns = ['predictedFraud'])
|
40 |
#append the predictions to the original dataframe
|
41 |
df_original = pd.read_csv(file_obj.name)
|
42 |
pred_df = pd.concat([df_original, pred_df], axis=1)
|
43 |
-
print(type(pred_df))
|
44 |
-
print(pred_df.shape)
|
45 |
-
# clr = classification_report(y_test, y_pred, target_names=['Not Fraud','Fraud'])
|
46 |
-
# return 'Classification Report:\n'+ clr
|
47 |
return pred_df
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
file = gr.components.File(file_count="single", type="file", label="Fisierul CSV cu tranzactii", optional=False)
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
inputs=file,
|
54 |
-
outputs=
|
55 |
-
title="Fraud Detection - EXPERT SYSTEM",
|
56 |
-
description='<h2>Sistem expert bazat pe un model de clasificare pentru detectarea fraudelor in tranzactii bancare.<h2><h3>predictedFraud - Predictii bazate pe modelul de clasificare. isFraud - Etichetele reale<h3
|
57 |
)
|
58 |
|
59 |
-
|
|
|
2 |
import pandas as pd
|
3 |
import joblib
|
4 |
|
5 |
+
treemodel = joblib.load('decision_tree.pkl')
|
6 |
+
nnmodel = joblib.load('neural_network.pkl')
|
7 |
|
8 |
def onehot(df, column):
|
9 |
df = df.copy()
|
|
|
13 |
return df
|
14 |
|
15 |
|
16 |
+
def dataframe(df):
|
|
|
17 |
df = onehot(df, column='type')
|
18 |
|
19 |
#if the 'type' column doesn't have value 'CASH_OUT' then add a column 'type_CASH_OUT' with value 0
|
|
|
33 |
df['type_PAYMENT'] = 0
|
34 |
|
35 |
df = df.drop(['nameOrig','nameDest','isFraud'], axis=1)
|
36 |
+
return df
|
37 |
+
|
38 |
+
def tree(file_obj):
|
39 |
+
df = pd.read_csv(file_obj.name)
|
40 |
+
df = dataframe(df)
|
41 |
+
y_pred = treemodel.predict(df)
|
42 |
pred_df = pd.DataFrame(y_pred, columns = ['predictedFraud'])
|
43 |
#append the predictions to the original dataframe
|
44 |
df_original = pd.read_csv(file_obj.name)
|
45 |
pred_df = pd.concat([df_original, pred_df], axis=1)
|
|
|
|
|
|
|
|
|
46 |
return pred_df
|
47 |
|
48 |
+
def nn(file_obj):
|
49 |
+
nn_df = pd.read_csv(file_obj.name)
|
50 |
+
nn_df = dataframe(nn_df)
|
51 |
+
y_prednn = nnmodel.predict(nn_df)
|
52 |
+
pred_dfnn = pd.DataFrame(y_prednn, columns = ['predictedFraud'])
|
53 |
+
#append the predictions to the original dataframe
|
54 |
+
df_originalnn = pd.read_csv(file_obj.name)
|
55 |
+
pred_dfnn = pd.concat([df_originalnn, pred_dfnn], axis=1)
|
56 |
+
return pred_dfnn
|
57 |
+
|
58 |
file = gr.components.File(file_count="single", type="file", label="Fisierul CSV cu tranzactii", optional=False)
|
59 |
+
tree_output = gr.components.Dataframe(max_rows=20, max_cols=None, overflow_row_behaviour="paginate", type="pandas", label="predictedFraud - Predictii bazate pe modelul de clasificare isFraud - Etichetele reale")
|
60 |
+
nn_output = gr.components.Dataframe(max_rows=20, max_cols=None, overflow_row_behaviour="paginate", type="pandas", label="predictedFraud - Predictii bazate pe modelul de clasificare isFraud - Etichetele reale")
|
61 |
+
tree_interface = gr.Interface(
|
62 |
+
fn=tree,
|
63 |
+
inputs=file,
|
64 |
+
outputs=tree_output,
|
65 |
+
title="Fraud Detection - DECISION TREE EXPERT SYSTEM",
|
66 |
+
description='<h2>Sistem expert bazat pe un model de clasificare pentru detectarea fraudelor in tranzactii bancare.<h2><h3>predictedFraud - Predictii bazate pe modelul de clasificare. isFraud - Etichetele reale<h3>'
|
67 |
+
)
|
68 |
+
|
69 |
+
nn_interface = gr.Interface(
|
70 |
+
fn=nn,
|
71 |
inputs=file,
|
72 |
+
outputs=nn_output,
|
73 |
+
title="Fraud Detection - NEURAL NETWORK EXPERT SYSTEM",
|
74 |
+
description='<h2>Sistem expert bazat pe un model de clasificare pentru detectarea fraudelor in tranzactii bancare.<h2><h3>predictedFraud - Predictii bazate pe modelul de clasificare. isFraud - Etichetele reale<h3>'
|
75 |
)
|
76 |
|
77 |
+
gr.Parallel(tree_interface, nn_interface).launch()
|
neural_network.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3addbf26362e78236b30a97ff690e7c4a21f1f4fe3dfed88f42cf91bd68a5e9e
|
3 |
+
size 92390
|