import gradio as gr import pandas as pd import joblib treemodel = joblib.load('decision_tree.pkl') nnmodel = joblib.load('neural_network.pkl') def onehot(df, column): df = df.copy() dummies = pd.get_dummies(df[column], prefix='type') df = pd.concat([df,dummies], axis=1) df = df.drop(column, axis=1) return df def dataframe(df): df = onehot(df, column='type') #if the 'type' column doesn't have value 'CASH_OUT' then add a column 'type_CASH_OUT' with value 0 if 'type_CASH_OUT' not in df.columns: df['type_CASH_OUT'] = 0 #if the 'type' column doesn't have value 'TRANSFER' then add a column 'type_TRANSFER' with value 0 if 'type_TRANSFER' not in df.columns: df['type_TRANSFER'] = 0 #if the 'type' column doesn't have value 'PAYMENT' then add a column 'type_PAYMENT' with value 0 if 'type_PAYMENT' not in df.columns: df['type_PAYMENT'] = 0 #if the 'type' column doesn't have value 'DEBIT' then add a column 'type_DEBIT' with value 0 if 'type_DEBIT' not in df.columns: df['type_DEBIT'] = 0 #if the 'type' column doesn't have value 'PAYMENT' then add a column 'type_PAYMENT' with value 0 if 'type_PAYMENT' not in df.columns: df['type_PAYMENT'] = 0 df = df.drop(['nameOrig','nameDest','isFraud'], axis=1) return df def tree(file_obj): df = pd.read_csv(file_obj.name) df = dataframe(df) y_pred = treemodel.predict(df) pred_df = pd.DataFrame(y_pred, columns = ['predictedFraud']) #append the predictions to the original dataframe df_original = pd.read_csv(file_obj.name) pred_df = pd.concat([df_original, pred_df], axis=1) return pred_df def nn(file_obj): nn_df = pd.read_csv(file_obj.name) nn_df = dataframe(nn_df) y_prednn = nnmodel.predict(nn_df) pred_dfnn = pd.DataFrame(y_prednn, columns = ['predictedFraud']) #append the predictions to the original dataframe df_originalnn = pd.read_csv(file_obj.name) pred_dfnn = pd.concat([df_originalnn, pred_dfnn], axis=1) return pred_dfnn file = gr.components.File(file_count="single", type="file", label="Fisierul CSV cu tranzactii", optional=False) tree_output = gr.components.Dataframe(max_rows=20, max_cols=None, overflow_row_behaviour="paginate", type="pandas", label="predictedFraud - Predictii bazate pe modelul de clasificare isFraud - Etichetele reale") nn_output = gr.components.Dataframe(max_rows=20, max_cols=None, overflow_row_behaviour="paginate", type="pandas", label="predictedFraud - Predictii bazate pe modelul de clasificare isFraud - Etichetele reale") tree_interface = gr.Interface( fn=tree, inputs=file, outputs=tree_output, title="Fraud Detection - DECISION TREE EXPERT SYSTEM", description='

Sistem expert bazat pe un model de clasificare pentru detectarea fraudelor in tranzactii bancare.

predictedFraud - Predictii bazate pe modelul de clasificare. isFraud - Etichetele reale

' ) nn_interface = gr.Interface( fn=nn, inputs=file, outputs=nn_output, title="Fraud Detection - NEURAL NETWORK EXPERT SYSTEM", description='

Sistem expert bazat pe un model de clasificare pentru detectarea fraudelor in tranzactii bancare.

predictedFraud - Predictii bazate pe modelul de clasificare. isFraud - Etichetele reale

' ) gr.Parallel(tree_interface, nn_interface).launch()