import gradio as gr import pandas as pd import pickle import numpy as np from tensorflow import keras treemodel = pickle.load(open('decision_tree.pkl', 'rb')) nnmodel = keras.models.load_model("nnmodel.h5") def onehot(df, column): df = df.copy() dummies = pd.get_dummies(df[column], prefix='type') df = pd.concat([df,dummies], axis=1) df = df.drop(column, axis=1) return df def dataframe(df): df = onehot(df, column='type') #if the 'type' column doesn't have value 'CASH_OUT' then add a column 'type_CASH_OUT' with value 0 if 'type_CASH_OUT' not in df.columns: df['type_CASH_OUT'] = 0 #if the 'type' column doesn't have value 'TRANSFER' then add a column 'type_TRANSFER' with value 0 if 'type_TRANSFER' not in df.columns: df['type_TRANSFER'] = 0 #if the 'type' column doesn't have value 'PAYMENT' then add a column 'type_PAYMENT' with value 0 if 'type_PAYMENT' not in df.columns: df['type_PAYMENT'] = 0 #if the 'type' column doesn't have value 'DEBIT' then add a column 'type_DEBIT' with value 0 if 'type_DEBIT' not in df.columns: df['type_DEBIT'] = 0 #if the 'type' column doesn't have value 'PAYMENT' then add a column 'type_PAYMENT' with value 0 if 'type_PAYMENT' not in df.columns: df['type_PAYMENT'] = 0 df = df.drop(['nameOrig','nameDest','isFraud'], axis=1) return df def tree(file_obj): df = pd.read_csv(file_obj.name) df = dataframe(df) y_pred = treemodel.predict(df) pred_df = pd.DataFrame(y_pred, columns = ['predictedFraud']) #append the predictions to the original dataframe df_original = pd.read_csv(file_obj.name) pred_df = pd.concat([df_original, pred_df], axis=1) return pred_df def nn(file_obj): nn_df = pd.read_csv(file_obj.name) nn_df = dataframe(nn_df) y_prednn = nnmodel.predict(nn_df) pred_proc = pd.DataFrame(y_prednn, columns = ['predictedFraudProbability']) pred=np.where(y_prednn<0.44,0,1) pred_dfnn = pd.DataFrame(pred, columns = ['predictedFraud']) #append the predictions to the original dataframe df_originalnn = pd.read_csv(file_obj.name) pred_dfnn = pd.concat([df_originalnn, pred_proc, pred_dfnn], axis=1) return pred_dfnn file = gr.components.File(file_count="single", type="file", label="Fisierul CSV cu tranzactii", optional=False) tree_output = gr.components.Dataframe(max_rows=20, max_cols=None, overflow_row_behaviour="paginate", type="pandas", label="predictedFraud - Predictii bazate pe modelul de clasificare DECISION TREE") nn_output = gr.components.Dataframe(max_rows=20, max_cols=None, overflow_row_behaviour="paginate", type="pandas", label="predictedFraud - Predictii bazate pe modelul de clasificare NEURAL NETWORK") tree_interface = gr.Interface( fn=tree, inputs=file, outputs=tree_output, ) nn_interface = gr.Interface( fn=nn, inputs=file, outputs=nn_output, ) def report_tree(file_obj): creport_tree = pd.read_csv('report_tree.csv') return creport_tree def report_nn(file_obj): creport_nn = pd.read_csv('report_nn.csv') return creport_nn cr_tree = gr.components.DataFrame(type="pandas", label="Classification Report (Decision Tree)") cr_nn = gr.components.DataFrame(type="pandas", label="Classification Report (Neural Network)") r_tree = gr.Interface( fn=report_tree, inputs = file, outputs = cr_tree, css="body {background-color: #f5f5f5; width: 100%; height: 100%; margin: 0; padding: 0;}" ) r_nn = gr.Interface( fn=report_nn, inputs = file, outputs = cr_nn, css="body {background-color: #f5f5f5; width: 100%; height: 100%; margin: 0; padding: 0;}" ) #tree_interface.launch(inline=True) gr.Parallel(tree_interface, nn_interface, r_tree, r_nn).launch(inline=True)