Spaces:
Sleeping
Sleeping
File size: 3,568 Bytes
434144a c355718 434144a c355718 acc8b42 5abc6b6 9f20b49 5abc6b6 ca6258e 9f20b49 ca6258e 9f20b49 5abc6b6 9f20b49 12c7670 859cc57 5fb50e6 b68eb49 2a25399 52ff483 5fb50e6 12c7670 acc8b42 171111d 5fb50e6 acc8b42 9f20b49 5fb50e6 5abc6b6 db708d2 acc8b42 434144a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
from os import environ as env
from os import system as run
from subprocess import check_output
import gradio as gr
def inference_binary_check():
# Without a GPU, we need to re-install llama-cpp-python to avoid an error.
# We use a shell command to detect if we have an NVIDIA GPU available:
use_gpu = True
try:
command = "nvidia-debugdump --list|grep Device"
output = str(check_output(command, shell=True).decode())
if "NVIDIA" in output and "ID" in output:
print("NVIDIA GPU detected.")
except Exception as e:
print("No NVIDIA GPU detected, using CPU. GPU check result:", e)
use_gpu = False
if use_gpu:
print("GPU detected, existing GPU focused llama-cpp-python should work.")
else:
print("Avoiding error by re-installing non-GPU llama-cpp-python build because no GPU was detected.")
run('pip uninstall llama-cpp-python -y')
run('pip install git+https://github.com/lukestanley/llama-cpp-python.git@expose_json_grammar_convert_function --upgrade --no-cache-dir --force-reinstall')
print("llama-cpp-python re-installed, will now attempt to load.")
LLM_WORKER = env.get("LLM_WORKER", "runpod")
if LLM_WORKER == "http" or LLM_WORKER == "in_memory":
inference_binary_check()
examples = [
["You guys are so slow, we will never ship it!"],
["Your idea of a balanced diet is a biscuit in each hand."]
]
description = """This is an early experimental tool aimed at helping reduce online toxicity by automatically ➡️ transforming 🌶️ spicy or toxic comments into constructive, ❤️ kinder dialogues using AI and large language models.
ChillTranslator aims to help make online interactions more healthy, with a tool to **convert** text to less toxic variations, **preserve original intent**, focusing on constructive dialogue.
The project is on GitHub:
[https://github.com/lukestanley/ChillTranslator](https://github.com/lukestanley/ChillTranslator)
The repo is the same repo for the HuggingFace Space, the serverless worker, and the logic.
Contributions are very welcome! Especially pull requests, free API credits.
Help make the internet a kinder place, one comment at a time. Your contribution could make a big difference!
"""
from chill import improvement_loop
def chill_out(text):
print("Got this input:", text)
result: dict = improvement_loop(text)
print("Got this result:", result)
formatted_output = f"""
<div>
<h4>Edited text:</h4>
<p>{result['edit']}</p>
<h4>Details:</h4>
<ul>
<li>Critique: {result['critique']}</li>
<li>Faithfulness score: {result['faithfulness_score']:.0%}</li>
<li>Spicy score: {result['spicy_score']:.0%}</li>
<li>Overall score: {result['overall_score']:.0%}</li>
<li>Iterations: {result['iteration_count'] / result['max_allowed_iterations']:.0%} {result['iteration_count']} of max allowed iterations: {result['max_allowed_iterations']}</li>
<li>Time used: {result['time_used']:.2f} seconds</li>
<li>LLM requests made: {result['request_count']}</li>
</ul>
</div>
"""
return formatted_output
demo = gr.Interface(
fn=chill_out,
inputs=gr.Textbox(lines=2, placeholder="Enter some spicy text here..."),
outputs="html",
examples=examples,
cache_examples=True,
description=description,
title="❄️ ChillTranslator 🤬 ➡️ 😎💬",
allow_flagging="never",
)
demo.launch(max_threads=1, share=True) |