Spaces:
Sleeping
Sleeping
File size: 7,394 Bytes
759e510 ac30aa7 759e510 ac30aa7 759e510 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# %%
import asyncio
import json
import time
import os
import hashlib
from functools import wraps
import pandas as pd
from datasets import load_dataset
from detoxify import Detoxify
# TODO: Compare OpenAI's moderation API to Detoxify
predict_model = Detoxify('original-small')
dataset = load_dataset("tasksource/jigsaw")
train_data = dataset['train']
print('length',len(train_data)) # length 159571
print(train_data[0]) # {'id': '0000997932d777bf', 'comment_text': "Explanation\nWhy the edits made under my username Hardcore Metallica Fan were reverted? They weren't vandalisms, just closure on some GAs after I voted at New York Dolls FAC. And please don't remove the template from the talk page since I'm retired now.89.205.38.27", 'toxic': 0, 'severe_toxic': 0, 'obscene': 0, 'threat': 0, 'insult': 0, 'identity_hate': 0}
small_subset = train_data[:2000]
predict_model.predict("You suck, that is not Markdown!") # Also accepts an array of strings, returning an single dict of arrays of predictions.
# Returns:
{'toxicity': 0.98870254,
'severe_toxicity': 0.087154716,
'obscene': 0.93440753,
'threat': 0.0032278204,
'insult': 0.7787105,
'identity_attack': 0.007936229}
_in_memory_cache = {}
def handle_cache(prefix, func, *args, _result=None, **kwargs):
# Generate a key based on function name and arguments
key = f"{func.__name__}_{args}_{kwargs}"
hashed_key = hashlib.sha1(key.encode()).hexdigest()
cache_filename = f"{prefix}_{hashed_key}.json"
# Check the in-memory cache first
if key in _in_memory_cache:
return _in_memory_cache[key]
# Check if cache file exists and read data
if os.path.exists(cache_filename):
with open(cache_filename, 'r') as file:
#print("Reading from cache file with prefix", prefix)
_in_memory_cache[key] = json.load(file)
return _in_memory_cache[key]
# If result is not provided (for sync functions), compute it
if _result is None:
_result = func(*args, **kwargs)
# Update the in-memory cache and write it to the file
_in_memory_cache[key] = _result
with open(cache_filename, 'w') as file:
json.dump(_result, file)
return _result
def acache(prefix):
def decorator(func):
@wraps(func)
async def wrapper(*args, **kwargs):
# Generate a key based on function name and arguments
key = f"{func.__name__}_{args}_{kwargs}"
hashed_key = hashlib.sha1(key.encode()).hexdigest()
cache_filename = f"{prefix}_{hashed_key}.json"
# Check the in-memory cache first
if key in _in_memory_cache:
return _in_memory_cache[key]
# Check if cache file exists and read data
if os.path.exists(cache_filename):
with open(cache_filename, 'r') as file:
_in_memory_cache[key] = json.load(file)
return _in_memory_cache[key]
# Await the function call and get the result
print("Computing result for async function")
result = await func(*args, **kwargs)
# Update the in-memory cache and write it to the file
_in_memory_cache[key] = result
with open(cache_filename, 'w') as file:
json.dump(result, file)
return result
return wrapper
return decorator
def cache(prefix):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
# Direct call to the shared cache handling function
return handle_cache(prefix, func, *args, **kwargs)
return wrapper
return decorator
def timeit(func):
@wraps(func)
async def async_wrapper(*args, **kwargs):
start_time = time.time()
result = await func(*args, **kwargs) # Awaiting the async function
end_time = time.time()
print(f"{func.__name__} took {end_time - start_time:.1f} seconds to run.")
return result
@wraps(func)
def sync_wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs) # Calling the sync function
end_time = time.time()
print(f"{func.__name__} took {end_time - start_time:.1f} seconds to run.")
return result
if asyncio.iscoroutinefunction(func):
return async_wrapper
else:
return sync_wrapper
@cache("toxicity")
def cached_toxicity_prediction(comments):
data = predict_model.predict(comments)
return data
def predict_toxicity(comments, batch_size=4):
"""
Predicts toxicity scores for a list of comments.
Args:
- comments: List of comment texts.
- batch_size: Size of batches for prediction to manage memory usage.
Returns:
A DataFrame with the original comments and their predicted toxicity scores.
"""
results = {'comment_text': [], 'toxicity': [], 'severe_toxicity': [], 'obscene': [], 'threat': [], 'insult': [], 'identity_attack': []}
for i in range(0, len(comments), batch_size):
batch_comments = comments[i:i+batch_size]
predictions = cached_toxicity_prediction(batch_comments)
# We convert the JSON serializable data back to a DataFrame:
results['comment_text'].extend(batch_comments)
for key in predictions.keys():
results[key].extend(predictions[key])
return pd.DataFrame(results)
# Predict toxicity scores for the small subset of comments:
#small_subset_predictions = predict_toxicity(small_subset['comment_text'][4])
# Let's just try out 4 comments with cached_toxicity_prediction:
small_subset['comment_text'][0:1]
# %%
small_subset_predictions=predict_toxicity(small_subset['comment_text'][0:200])
# %%
small_subset_predictions
# %%
def filter_comments(dataframe, toxicity_threshold=0.2, severe_toxicity_threshold=0.4):
"""
Filters comments based on specified thresholds for toxicity, severe toxicity.
Args:
- dataframe: DataFrame containing comments and their toxicity scores.
- toxicity_threshold: Toxicity score threshold.
- severe_toxicity_threshold: Severe toxicity score threshold.
- identity_attack_threshold: Identity attack score threshold.
Returns:
DataFrame filtered based on the specified thresholds.
"""
identity_attack_threshold = 0.5
insult_threshold = 0.3
obscene_threshold = 0.6
threat_threshold = 0.3
filtered_df = dataframe[
(dataframe['toxicity'] >= toxicity_threshold) &
#(dataframe['toxicity'] < 1.0) & # Ensure comments are spicy but not 100% toxic
(dataframe['severe_toxicity'] < severe_toxicity_threshold) &
(dataframe['identity_attack'] < identity_attack_threshold) &
(dataframe['insult'] < insult_threshold) &
(dataframe['obscene'] < obscene_threshold) &
(dataframe['threat'] < threat_threshold)
]
return filtered_df
spicy_comments = filter_comments(small_subset_predictions)
# Lets sort spicy comments by combined toxicity score:
spicy_comments.sort_values(by=['toxicity', 'severe_toxicity'], ascending=True, inplace=True)
# Print the spicy comments comment_text and their toxicity scores as a formatted string:
for index, row in spicy_comments.iterrows():
print(f"Comment: `{row['comment_text']}` \n Toxiciy: {(row['toxicity'] + row['severe_toxicity']) / 2 * 100:.0f}% \n")
|