File size: 3,568 Bytes
434144a
c355718
 
 
 
 
434144a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c355718
acc8b42
 
 
 
 
5abc6b6
9f20b49
5abc6b6
ca6258e
9f20b49
ca6258e
9f20b49
5abc6b6
 
9f20b49
 
12c7670
 
 
 
859cc57
5fb50e6
 
 
 
 
 
 
 
 
b68eb49
 
 
2a25399
 
52ff483
5fb50e6
 
 
 
12c7670
acc8b42
 
171111d
5fb50e6
acc8b42
9f20b49
5fb50e6
5abc6b6
db708d2
acc8b42
 
434144a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from os import environ as env
from os import system as run
from subprocess import check_output

import gradio as gr


def inference_binary_check():
    # Without a GPU, we need to re-install llama-cpp-python to avoid an error.
    # We use a shell command to detect if we have an NVIDIA GPU available:
    use_gpu = True
    try:
        command = "nvidia-debugdump --list|grep Device"
        output = str(check_output(command, shell=True).decode())
        if "NVIDIA" in output and "ID" in output:
            print("NVIDIA GPU detected.")
    except Exception as e:
        print("No NVIDIA GPU detected, using CPU. GPU check result:", e)
        use_gpu = False

    if use_gpu:
        print("GPU detected, existing GPU focused llama-cpp-python should work.")
    else:
        print("Avoiding error by re-installing non-GPU llama-cpp-python build because no GPU was detected.")
        run('pip uninstall llama-cpp-python -y')
        run('pip install git+https://github.com/lukestanley/llama-cpp-python.git@expose_json_grammar_convert_function --upgrade --no-cache-dir --force-reinstall')
        print("llama-cpp-python re-installed, will now attempt to load.")


LLM_WORKER = env.get("LLM_WORKER", "runpod")

if LLM_WORKER == "http" or LLM_WORKER == "in_memory":
    inference_binary_check()

examples = [
    ["You guys are so slow, we will never ship it!"],
    ["Your idea of a balanced diet is a biscuit in each hand."]
]

description = """This is an early experimental tool aimed at helping reduce online toxicity by automatically ➡️ transforming 🌶️ spicy or toxic comments into constructive, ❤️ kinder dialogues using AI and large language models.

ChillTranslator aims to help make online interactions more healthy, with a tool to **convert** text to less toxic variations, **preserve original intent**, focusing on constructive dialogue.
The project is on GitHub:
[https://github.com/lukestanley/ChillTranslator](https://github.com/lukestanley/ChillTranslator)
The repo is the same repo for the HuggingFace Space, the serverless worker, and the logic.

Contributions are very welcome! Especially pull requests, free API credits.
Help make the internet a kinder place, one comment at a time. Your contribution could make a big difference!
"""

from chill import improvement_loop

def chill_out(text):
    print("Got this input:", text)
    result: dict = improvement_loop(text)
    print("Got this result:", result)

    formatted_output = f"""
    <div>
        <h4>Edited text:</h4>
        <p>{result['edit']}</p>
        <h4>Details:</h4>
        <ul>
            <li>Critique: {result['critique']}</li>
            <li>Faithfulness score: {result['faithfulness_score']:.0%}</li>
            <li>Spicy score: {result['spicy_score']:.0%}</li>
            <li>Overall score: {result['overall_score']:.0%}</li>
            <li>Iterations: {result['iteration_count'] / result['max_allowed_iterations']:.0%} {result['iteration_count']} of max allowed iterations: {result['max_allowed_iterations']}</li> 
            <li>Time used: {result['time_used']:.2f} seconds</li>
            <li>LLM requests made: {result['request_count']}</li>
        </ul>
    </div>
    """
    return formatted_output

demo = gr.Interface(
    fn=chill_out, 
    inputs=gr.Textbox(lines=2, placeholder="Enter some spicy text here..."), 
    outputs="html",
    examples=examples,
    cache_examples=True,
    description=description,
    title="❄️ ChillTranslator 🤬 ➡️ 😎💬",
    allow_flagging="never",
)

demo.launch(max_threads=1, share=True)