Spaces:
Sleeping
Sleeping
import json | |
from os import environ as env | |
from typing import Any, Dict, Union | |
import requests | |
from huggingface_hub import hf_hub_download | |
from llama_cpp import Llama, LlamaGrammar, json_schema_to_gbnf | |
# There are two ways to use the LLM model currently used: | |
# 1. Use the HTTP server (USE_HTTP_SERVER=True), this is good for development | |
# when you want to change the logic of the translator without restarting the server. | |
# 2. Load the model into memory | |
# When using the HTTP server, it must be ran separately. See the README for instructions. | |
# The llama_cpp Python HTTP server communicates with the AI model, similar | |
# to the OpenAI API but adds a unique "grammar" parameter. | |
# The real OpenAI API has other ways to set the output format. | |
# It's possible to switch to another LLM API by changing the llm_streaming function. | |
URL = "http://localhost:5834/v1/chat/completions" | |
in_memory_llm = None | |
LLM_MODEL_PATH = env.get("LLM_MODEL_PATH", None) | |
USE_HTTP_SERVER = env.get("USE_HTTP_SERVER", "false").lower() == "true" | |
if len(LLM_MODEL_PATH) > 0: | |
print(f"Using local model from {LLM_MODEL_PATH}") | |
else: | |
print("No local LLM_MODEL_PATH environment variable set. We need a model, downloading model from HuggingFace Hub") | |
LLM_MODEL_PATH =hf_hub_download( | |
repo_id=env.get("REPO_ID", "TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"), | |
filename=env.get("MODEL_FILE", "mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf"), | |
) | |
print(f"Model downloaded to {LLM_MODEL_PATH}") | |
if in_memory_llm is None and USE_HTTP_SERVER is False: | |
print("Loading model into memory. If you didn't want this, set the USE_HTTP_SERVER environment variable to 'true'.") | |
in_memory_llm = Llama(model_path=LLM_MODEL_PATH) | |
def llm_streaming( | |
prompt: str, pydantic_model_class, return_pydantic_object=False | |
) -> Union[str, Dict[str, Any]]: | |
schema = pydantic_model_class.model_json_schema() | |
# Optional example field from schema, is not needed for the grammar generation | |
if "example" in schema: | |
del schema["example"] | |
json_schema = json.dumps(schema) | |
grammar = json_schema_to_gbnf(json_schema) | |
payload = { | |
"stream": True, | |
"max_tokens": 1000, | |
"grammar": grammar, | |
"temperature": 0.7, | |
"messages": [{"role": "user", "content": prompt}], | |
} | |
headers = { | |
"Content-Type": "application/json", | |
} | |
response = requests.post( | |
URL, | |
headers=headers, | |
json=payload, | |
stream=True, | |
) | |
output_text = "" | |
for chunk in response.iter_lines(): | |
if chunk: | |
chunk = chunk.decode("utf-8") | |
if chunk.startswith("data: "): | |
chunk = chunk.split("data: ")[1] | |
if chunk.strip() == "[DONE]": | |
break | |
chunk = json.loads(chunk) | |
new_token = chunk.get("choices")[0].get("delta").get("content") | |
if new_token: | |
output_text = output_text + new_token | |
print(new_token, sep="", end="", flush=True) | |
print('\n') | |
if return_pydantic_object: | |
model_object = pydantic_model_class.model_validate_json(output_text) | |
return model_object | |
else: | |
json_output = json.loads(output_text) | |
return json_output | |
def replace_text(template: str, replacements: dict) -> str: | |
for key, value in replacements.items(): | |
template = template.replace(f"{{{key}}}", value) | |
return template | |
def calculate_overall_score(faithfulness, spiciness): | |
baseline_weight = 0.8 | |
overall = faithfulness + (1 - baseline_weight) * spiciness * faithfulness | |
return overall | |
def llm_stream_sans_network( | |
prompt: str, pydantic_model_class, return_pydantic_object=False | |
) -> Union[str, Dict[str, Any]]: | |
schema = pydantic_model_class.model_json_schema() | |
# Optional example field from schema, is not needed for the grammar generation | |
if "example" in schema: | |
del schema["example"] | |
json_schema = json.dumps(schema) | |
grammar = LlamaGrammar.from_json_schema(json_schema) | |
stream = in_memory_llm( | |
prompt, | |
n_ctx=4096, | |
max_tokens=1000, | |
temperature=0.7, | |
grammar=grammar, | |
stream=True | |
) | |
output_text = "" | |
for chunk in stream: | |
result = chunk["choices"][0] | |
print(result["text"], end='', flush=True) | |
output_text = output_text + result["text"] | |
print('\n') | |
if return_pydantic_object: | |
model_object = pydantic_model_class.model_validate_json(output_text) | |
return model_object | |
else: | |
json_output = json.loads(output_text) | |
return json_output | |
def query_ai_prompt(prompt, replacements, model_class, in_memory=True): | |
prompt = replace_text(prompt, replacements) | |
if in_memory: | |
return llm_stream_sans_network(prompt, model_class) | |
else: | |
return llm_streaming(prompt, model_class) | |