ChillTranslator / utils.py
lukestanley's picture
Add log_to_jsonl function to data.py and remove duplicate function from utils.py
44bab49
raw
history blame
9.62 kB
import datetime
import json
from time import time, sleep
from os import environ as env
from typing import Any, Dict, Union
from data import log_to_jsonl
import requests
from huggingface_hub import hf_hub_download
# There are 4 ways to use a LLM model currently used:
# 1. Use the HTTP server (USE_HTTP_SERVER=True), this is good for development
# when you want to change the logic of the translator without restarting the server.
# 2. Load the model into memory
# When using the HTTP server, it must be ran separately. See the README for instructions.
# The llama_cpp Python HTTP server communicates with the AI model, similar
# to the OpenAI API but adds a unique "grammar" parameter.
# The real OpenAI API has other ways to set the output format.
# It's possible to switch to another LLM API by changing the llm_streaming function.
# 3. Use the RunPod API, which is a paid service with severless GPU functions.
# See serverless.md for more information.
# 4. Use the Mistral API, which is a paid services.
URL = "http://localhost:5834/v1/chat/completions"
in_memory_llm = None
worker_options = ["runpod", "http", "in_memory", "mistral"]
LLM_WORKER = env.get("LLM_WORKER", "mistral")
if LLM_WORKER not in worker_options:
raise ValueError(f"Invalid worker: {LLM_WORKER}")
N_GPU_LAYERS = int(env.get("N_GPU_LAYERS", -1)) # Default to -1, use all layers if available
CONTEXT_SIZE = int(env.get("CONTEXT_SIZE", 2048))
LLM_MODEL_PATH = env.get("LLM_MODEL_PATH", None)
MAX_TOKENS = int(env.get("MAX_TOKENS", 1000))
TEMPERATURE = float(env.get("TEMPERATURE", 0.3))
performing_local_inference = (LLM_WORKER == "in_memory" or LLM_WORKER == "http")
if LLM_MODEL_PATH and len(LLM_MODEL_PATH) > 0:
print(f"Using local model from {LLM_MODEL_PATH}")
if performing_local_inference and not LLM_MODEL_PATH:
print("No local LLM_MODEL_PATH environment variable set. We need a model, downloading model from HuggingFace Hub")
LLM_MODEL_PATH =hf_hub_download(
repo_id=env.get("REPO_ID", "TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"),
filename=env.get("MODEL_FILE", "mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf"),
)
print(f"Model downloaded to {LLM_MODEL_PATH}")
if LLM_WORKER == "http" or LLM_WORKER == "in_memory":
from llama_cpp import Llama, LlamaGrammar, json_schema_to_gbnf
if in_memory_llm is None and LLM_WORKER == "in_memory":
print("Loading model into memory. If you didn't want this, set the USE_HTTP_SERVER environment variable to 'true'.")
in_memory_llm = Llama(model_path=LLM_MODEL_PATH, n_ctx=CONTEXT_SIZE, n_gpu_layers=N_GPU_LAYERS, verbose=True)
def llm_streaming(
prompt: str, pydantic_model_class, return_pydantic_object=False
) -> Union[str, Dict[str, Any]]:
schema = pydantic_model_class.model_json_schema()
# Optional example field from schema, is not needed for the grammar generation
if "example" in schema:
del schema["example"]
json_schema = json.dumps(schema)
grammar = json_schema_to_gbnf(json_schema)
payload = {
"stream": True,
"max_tokens": MAX_TOKENS,
"grammar": grammar,
"temperature": TEMPERATURE,
"messages": [{"role": "user", "content": prompt}],
}
headers = {
"Content-Type": "application/json",
}
response = requests.post(
URL,
headers=headers,
json=payload,
stream=True,
)
output_text = ""
for chunk in response.iter_lines():
if chunk:
chunk = chunk.decode("utf-8")
if chunk.startswith("data: "):
chunk = chunk.split("data: ")[1]
if chunk.strip() == "[DONE]":
break
chunk = json.loads(chunk)
new_token = chunk.get("choices")[0].get("delta").get("content")
if new_token:
output_text = output_text + new_token
print(new_token, sep="", end="", flush=True)
print('\n')
if return_pydantic_object:
model_object = pydantic_model_class.model_validate_json(output_text)
return model_object
else:
json_output = json.loads(output_text)
return json_output
def replace_text(template: str, replacements: dict) -> str:
for key, value in replacements.items():
template = template.replace(f"{{{key}}}", value)
return template
def calculate_overall_score(faithfulness, spiciness):
baseline_weight = 0.8
overall = faithfulness + (1 - baseline_weight) * spiciness * faithfulness
return overall
def llm_stream_sans_network(
prompt: str, pydantic_model_class, return_pydantic_object=False
) -> Union[str, Dict[str, Any]]:
schema = pydantic_model_class.model_json_schema()
# Optional example field from schema, is not needed for the grammar generation
if "example" in schema:
del schema["example"]
json_schema = json.dumps(schema)
grammar = LlamaGrammar.from_json_schema(json_schema)
stream = in_memory_llm(
prompt,
max_tokens=MAX_TOKENS,
temperature=TEMPERATURE,
grammar=grammar,
stream=True
)
output_text = ""
for chunk in stream:
result = chunk["choices"][0]
print(result["text"], end='', flush=True)
output_text = output_text + result["text"]
print('\n')
if return_pydantic_object:
model_object = pydantic_model_class.model_validate_json(output_text)
return model_object
else:
json_output = json.loads(output_text)
return json_output
def llm_stream_serverless(prompt,model):
RUNPOD_ENDPOINT_ID = env.get("RUNPOD_ENDPOINT_ID")
RUNPOD_API_KEY = env.get("RUNPOD_API_KEY")
assert RUNPOD_ENDPOINT_ID, "RUNPOD_ENDPOINT_ID environment variable not set"
assert RUNPOD_API_KEY, "RUNPOD_API_KEY environment variable not set"
url = f"https://api.runpod.ai/v2/{RUNPOD_ENDPOINT_ID}/runsync"
headers = {
'Content-Type': 'application/json',
'Authorization': f'Bearer {RUNPOD_API_KEY}'
}
schema = model.schema()
data = {
'input': {
'schema': json.dumps(schema),
'prompt': prompt
}
}
response = requests.post(url, json=data, headers=headers)
assert response.status_code == 200, f"Unexpected RunPod API status code: {response.status_code} with body: {response.text}"
result = response.json()
print(result)
# TODO: After a 30 second timeout, a job ID is returned in the response instead,
# and the client must poll the job status endpoint to get the result.
output = result['output'].replace("model:mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf\n", "")
# TODO: remove replacement once new version of runpod is deployed
return json.loads(output)
# Global variables to enforce rate limiting
LAST_REQUEST_TIME = None
REQUEST_INTERVAL = 0.5 # Minimum time interval between requests in seconds
def llm_stream_mistral_api(prompt: str, pydantic_model_class) -> Union[str, Dict[str, Any]]:
global LAST_REQUEST_TIME
current_time = time()
if LAST_REQUEST_TIME is not None:
elapsed_time = current_time - LAST_REQUEST_TIME
if elapsed_time < REQUEST_INTERVAL:
sleep_time = REQUEST_INTERVAL - elapsed_time
sleep(sleep_time)
print(f"Slept for {sleep_time} seconds to enforce rate limit")
LAST_REQUEST_TIME = time()
MISTRAL_API_URL = env.get("MISTRAL_API_URL", "https://api.mistral.ai/v1/chat/completions")
MISTRAL_API_KEY = env.get("MISTRAL_API_KEY", None)
if not MISTRAL_API_KEY:
raise ValueError("MISTRAL_API_KEY environment variable not set")
headers = {
'Content-Type': 'application/json',
'Accept': 'application/json',
'Authorization': f'Bearer {MISTRAL_API_KEY}'
}
data = {
'model': 'mistral-small-latest',
'messages': [
{
'role': 'user',
'response_format': {'type': 'json_object'},
'content': prompt
}
]
}
response = requests.post(MISTRAL_API_URL, headers=headers, json=data)
if response.status_code != 200:
raise ValueError(f"Unexpected Mistral API status code: {response.status_code} with body: {response.text}")
result = response.json()
print(result)
output = result['choices'][0]['message']['content']
if pydantic_model_class:
parsed_result = pydantic_model_class.model_validate_json(output)
print(parsed_result)
# This will raise an exception if the model is invalid,
# TODO: handle exception with retry logic
else:
print("No pydantic model class provided, returning without class validation")
return json.loads(output)
def query_ai_prompt(prompt, replacements, model_class):
prompt = replace_text(prompt, replacements)
if LLM_WORKER == "mistral":
result = llm_stream_mistral_api(prompt, model_class)
if LLM_WORKER == "mistral":
result = llm_stream_mistral_api(prompt, model_class)
if LLM_WORKER == "runpod":
result = llm_stream_serverless(prompt, model_class)
if LLM_WORKER == "http":
result = llm_streaming(prompt, model_class)
if LLM_WORKER == "in_memory":
result = llm_stream_sans_network(prompt, model_class)
log_entry = {
"uuid": str(uuid.uuid4()),
"timestamp": datetime.datetime.utcnow().isoformat(),
"worker": LLM_WORKER,
"prompt_input": prompt,
"prompt_output": result
}
log_to_jsonl('prompt_inputs_and_outputs.jsonl', log_entry)
return result