Spaces:
Sleeping
Sleeping
Luke Stanley
commited on
Commit
•
233efeb
1
Parent(s):
feeb679
RunPod Mixtral JSON output test
Browse files- runpod.dockerfile +9 -0
- runpod_handler.py +80 -4
runpod.dockerfile
CHANGED
@@ -10,6 +10,15 @@ ENV HF_HOME="/runpod-volume/.cache/huggingface/"
|
|
10 |
RUN python3.11 -m pip install --upgrade pip && \
|
11 |
python3.11 -m pip install runpod==1.6.0
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
ADD runpod_handler.py .
|
14 |
|
15 |
CMD python3.11 -u /runpod_handler.py
|
|
|
10 |
RUN python3.11 -m pip install --upgrade pip && \
|
11 |
python3.11 -m pip install runpod==1.6.0
|
12 |
|
13 |
+
RUN python3.11 -m pip install pytest cmake \
|
14 |
+
scikit-build setuptools pydantic-settings \
|
15 |
+
huggingface_hub hf_transfer \
|
16 |
+
pydantic pydantic_settings \
|
17 |
+
llama-cpp-python
|
18 |
+
|
19 |
+
# Install llama-cpp-python (build with cuda)
|
20 |
+
ENV CMAKE_ARGS="-DLLAMA_CUBLAS=on"
|
21 |
+
RUN python3.11 -m pip install llama-cpp-python --upgrade --no-cache-dir --force-reinstall
|
22 |
ADD runpod_handler.py .
|
23 |
|
24 |
CMD python3.11 -u /runpod_handler.py
|
runpod_handler.py
CHANGED
@@ -1,9 +1,82 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
3 |
import runpod
|
4 |
|
|
|
5 |
# If your handler runs inference on a model, load the model here.
|
6 |
# You will want models to be loaded into memory before starting serverless.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
def handler(job):
|
@@ -12,7 +85,10 @@ def handler(job):
|
|
12 |
|
13 |
name = job_input.get('name', 'World')
|
14 |
|
15 |
-
return f"Hello, {name}!"
|
16 |
-
|
|
|
|
|
|
|
17 |
|
18 |
runpod.serverless.start({"handler": handler})
|
|
|
1 |
+
import json
|
2 |
+
from os import environ as env
|
3 |
+
from typing import Any, Dict, Union
|
4 |
+
from llama_cpp import Llama, LlamaGrammar
|
5 |
+
from pydantic import BaseModel, Field
|
6 |
import runpod
|
7 |
|
8 |
+
|
9 |
# If your handler runs inference on a model, load the model here.
|
10 |
# You will want models to be loaded into memory before starting serverless.
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
small_repo = "TheBloke/phi-2-GGUF"
|
13 |
+
small_model="phi-2.Q2_K.gguf"
|
14 |
+
big_repo = "TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
|
15 |
+
big_model = "mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf"
|
16 |
+
LLM_MODEL_PATH =hf_hub_download(
|
17 |
+
repo_id=big_repo,
|
18 |
+
filename=big_model,
|
19 |
+
)
|
20 |
+
print(f"Model downloaded to {LLM_MODEL_PATH}")
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
in_memory_llm = None
|
25 |
+
|
26 |
+
N_GPU_LAYERS = env.get("N_GPU_LAYERS", -1) # Default to -1, which means use all layers if available
|
27 |
+
CONTEXT_SIZE = int(env.get("CONTEXT_SIZE", 2048))
|
28 |
+
USE_HTTP_SERVER = env.get("USE_HTTP_SERVER", "false").lower() == "true"
|
29 |
+
MAX_TOKENS = int(env.get("MAX_TOKENS", 1000))
|
30 |
+
TEMPERATURE = float(env.get("TEMPERATURE", 0.3))
|
31 |
+
|
32 |
+
class Movie(BaseModel):
|
33 |
+
title: str = Field(..., title="The title of the movie")
|
34 |
+
year: int = Field(..., title="The year the movie was released")
|
35 |
+
director: str = Field(..., title="The director of the movie")
|
36 |
+
genre: str = Field(..., title="The genre of the movie")
|
37 |
+
plot: str = Field(..., title="Plot summary of the movie")
|
38 |
+
|
39 |
+
JSON_EXAMPLE_MOVIE = """
|
40 |
+
{ "title": "The Matrix", "year": 1999, "director": "The Wachowskis", "genre": "Science Fiction", "plot":"Prgrammer realises he lives in simulation and plays key role."
|
41 |
+
"""
|
42 |
+
|
43 |
+
if in_memory_llm is None:
|
44 |
+
print("Loading model into memory. If you didn't want this, set the USE_HTTP_SERVER environment variable to 'true'.")
|
45 |
+
in_memory_llm = Llama(model_path=LLM_MODEL_PATH, n_ctx=CONTEXT_SIZE, n_gpu_layers=N_GPU_LAYERS, verbose=True)
|
46 |
+
|
47 |
+
def llm_stream_sans_network(
|
48 |
+
prompt: str, pydantic_model_class=Movie, return_pydantic_object=False
|
49 |
+
) -> Union[str, Dict[str, Any]]:
|
50 |
+
schema = pydantic_model_class.model_json_schema()
|
51 |
+
|
52 |
+
# Optional example field from schema, is not needed for the grammar generation
|
53 |
+
if "example" in schema:
|
54 |
+
del schema["example"]
|
55 |
+
|
56 |
+
json_schema = json.dumps(schema)
|
57 |
+
grammar = LlamaGrammar.from_json_schema(json_schema)
|
58 |
+
|
59 |
+
stream = in_memory_llm(
|
60 |
+
prompt,
|
61 |
+
max_tokens=MAX_TOKENS,
|
62 |
+
temperature=TEMPERATURE,
|
63 |
+
grammar=grammar,
|
64 |
+
stream=True
|
65 |
+
)
|
66 |
+
|
67 |
+
output_text = ""
|
68 |
+
for chunk in stream:
|
69 |
+
result = chunk["choices"][0]
|
70 |
+
print(result["text"], end='', flush=True)
|
71 |
+
output_text = output_text + result["text"]
|
72 |
+
|
73 |
+
print('\n')
|
74 |
+
|
75 |
+
if return_pydantic_object:
|
76 |
+
model_object = pydantic_model_class.model_validate_json(output_text)
|
77 |
+
return model_object
|
78 |
+
else:
|
79 |
+
return output_text
|
80 |
|
81 |
|
82 |
def handler(job):
|
|
|
85 |
|
86 |
name = job_input.get('name', 'World')
|
87 |
|
88 |
+
#return f"Hello, {name}!"
|
89 |
+
return llm_stream_sans_network(
|
90 |
+
f"""You need to output JSON objects describing movies.
|
91 |
+
For example for the movie called: `The Matrix`: Output: {JSON_EXAMPLE_MOVIE}
|
92 |
+
Instruct: Output the JSON object for the movie: `{name}` Output: """)
|
93 |
|
94 |
runpod.serverless.start({"handler": handler})
|