lulleliu commited on
Commit
f2854ec
·
1 Parent(s): 04e07f6

firts try test

Browse files
Files changed (1) hide show
  1. app.py +59 -0
app.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # run this to import all needed libraries
2
+ !pip install -U duckduckgo_search
3
+ !pip install firebase-admin
4
+ !pip install gradio
5
+
6
+ from fastai import *
7
+ from fastdownload import download_url
8
+ from fastai.vision.all import *
9
+ from duckduckgo_search import ddg_images
10
+ from fastcore.all import *
11
+ import gradio as gr
12
+
13
+
14
+ # ref = db.reference("/")
15
+ path = Path()
16
+ model = load_learner(path/"Emotionv2.pkl")
17
+ #working process , unpickling
18
+ # något sätt att ladda upp filer
19
+ # modellen visar de bilder den analyserar och vad den klassificierar
20
+
21
+ labelA = "Angry human face"
22
+ labelB = "Disgusted human face"
23
+ labelC = "Happy human face"
24
+ labelD = "Sad human face"
25
+
26
+ labels = ["Angry human face", "Disgusted human face", "Happy human face", "Sad human face"]
27
+
28
+ # this is where we use the model on a given file and get the classification and probability for it that the model gives
29
+ # img = PILImage.create("Sad2.jpg") # insert uploaded file name
30
+
31
+ def predict(img):
32
+ img = PILImage.create(img)
33
+ pred,_,probs = model.predict(img)
34
+ # a = model.predict(img)
35
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
36
+
37
+
38
+ # print(a)
39
+ # img.show()
40
+ # print(f"this is: {pred}")
41
+ # print(f"{labelA} {probs[0].item():.2f}")
42
+ # print(f"{labelB} {probs[1].item():.2f}")
43
+ # print(f"{labelC} {probs[2].item():.2f}")
44
+ # print(f"{labelD} {probs[3].item():.2f}")
45
+
46
+ # print(f"Probability of {pred}: {max(probs):.2f}")
47
+
48
+ interpretation='default'
49
+
50
+ # gr.Image(source="webcam", streaming=True),
51
+
52
+ gr.Interface(fn=predict,
53
+ inputs=gr.inputs.Image(shape=(512, 512)),
54
+ interpretation=interpretation,
55
+ outputs=gr.outputs.Label(num_top_classes=4)).launch(share=True)
56
+
57
+
58
+
59
+